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ANALYSIS OF  TRANSIENT, LINEAR WAVE PROPAGATION 

I N  SHELLS BY THE FINITE DIFFERENCE METHOD 

By  Thomas L .  Geers and  Lawrence H .  Sobel 
Lockheed Missiles & Space Company 

Palo  Alto,   California 

Chapter 1 

INTRODUCTION 

The f i n i t e   d i f f e r e n c e  method has  been  used f o r  many yea r s   i n   t he   so lu t ion  

of d i f fe ren t ia l   equa t ions ,   inc luding   those  of she l l   theory .  Because the method 

involves  the  transformation of d i f fe ren t ia l   equa t ions   for   cont inuous   var iab les  

in to   d i f f e rence   equa t ions   fo r   d i sc re t e   va r i ab le s ,  a question of pr imary   in te res t  

i s  the  following: A t  what mesh s i ze   ( i f   any )  do the   f i n i t e   d i f f e rence   equa t ions  

accurately  reproduce  the  solutions of i n t e r e s t   t o   t h e   d i f f e r e n t i a l   e q u a t i o n s ?  

This   repor t   addresses   i t se l f   to   tha t   ques t ion   as  it p e r t a i n s   t o   t r a n s i e n t ,  

l i n e a r  wave propagat ion   in   she l l s .  

The motivat ion  behind  this   s tudy was t o  provide a suff ic ient ly   f i rm  under-  

standing of t h e   t i t l e   s u b j e c t   t h a t   d e t a i l e d  comparisons  could  be made between 

t h e   f i n i t e   d i f f e r e n c e  method and other  numerical methods of ana lys i s .  A s  the 

study  progressed, it became p o s s i b l e   t o  make preliminary  comparisons;  while 

these  appear a t   app ropr i a t e   po in t s   i n   t he   r epor t ,   t he  comprehensive  comparison 

study i s  l e f t   f o r   f u t u r e  work. 

The repor t  i s  d iv ided   in to   f ive   chapters .   This   chapter   conta ins   an   ou t l ine  

of the  considerations  underlying  the  study and descr ipt ions of t h e   s h e l l  equa- 

t i ons  and t h e   f i n i t e   d i f f e r e n c e  code used. The second  chapter  contains  numerical 

r e s u l t s  and d i scuss ion   fo r  a va r i e ty  of  wave propagation  problems;  this  serves t o  

es tabl ish  the  accuracy and p rac t i ca l   l imi t a t ions  of the  method. The th i rd   chapter  

p re sen t s   t he   r e su l t s  of ana ly t ica l   inves t iga t ions   tha t   expla in   cer ta in   behavior  

observed in  the  computations of Chapter 2 a s   w e l l   a s  some c h a r a c t e r i s t i c s  of 

computations  by  other  methods. The fourth  chapter   deals   with a problem of 

s p e c i a l   i n t e r e s t ,   v i z  ., t he   s ca t t e r ing  of t rans ien t   longi tudina l  and f l e x u r a l  

waves i n  a cy l indr ica l   she l l   by   cu touts .   Chapter  5 completes  the  report  with 

a statement of major  conclusions and  recommendations fo r   fu tu re   s tudy .  



1.1 RESPONSE VARLABLES 

It i s  of course  important a t  the ou t se t   t o   i den t i fy   t he   r e sponse   va r i ab le s  

t h a t   a r e   t o  be  used as a bas i s   for   judging   the   accuracy  of f i n i t e   d i f f e r e n c e  

computations. To do   th i s ,  w e  ind ica te  two  uses t o  which  such  computations  are 

o f t en   pu t .   F i r s t ,   t r ans i en t  she l l  response  computations may be used as   ex-  

c i t a t i o n   i n p u t s   t o  small s t ruc tu ra l   sys t ems   t ha t   a r e   a t t ached   t o   t he   she l l ,   i n  

o r d e r   t o   p r e d i c t   f a i l u r e   o r   s u r v i v a l  of these  systems.  Second,  transient  shell  

responses may be  used t o   p r e d i c t   f a i l u r e  or surv iva l  of the  shell i t s e l f .  

In  connection  with  the first use, l e t  us  examine br ie f ly   the   response  of 

a damped, s ingle-degree-of   - f reedom  osci l la tor   exci ted  a t  i t s  spring-dashpot 

attachment  point.  The response  quantity on which the fa i lure  or   surv iva l  of 

such a system most d i r e c t l y  depends i s  the  re la t ive  displacement   across   the 

spring-dashpot  pair .  Thus we write the  governing  equat ion  for   the  osci l la tor  

i n   t h e  form  (Ref. 1) 

Y + 2cwo3; + wo y = - j; 
2 

0 

where y i s  relat ive  displacement ,  x i s  attachment  point  displacement, 

and 5 are   the   osc i l la tor ' s   f ixed-base  undamped natural   f requency and 
0 

wO 
c r i t i c a l  damping r a t io ,   r e spec t ive ly  (5 << 1 i n   t h e   v a s t   m a j o r i t y  of cases ), 
and a dot   denotes   s ing le   d i f fe ren t ia t ion   in  time. If w e  now introduce  the 

Fourier  transform  (Ref. 2 ) 

? ( w )  = f ( t ) e - jw td t  
-03 i 

the   re la t ive   d i sp lacement   response   for   qu iescent   in i t ia l   condi t ions  i s  given  by 

L e t  us now consider  three  frequency  regions  in  the  (posit ive ) frequency 

domain: (1) the  region 0 5 w s w7. , where ~1 << wo (2) the region 

q s w s 9 , where 9 >> wo and (3)  the  region 9 s w s m. We write 

from Eq. 3, then,  since x0 ( t )  i s  r e a l ,  

2 2 

2 2 
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where an  as ter isk  denotes  complex conjugate and  where v o ( t )  and a o ( t )  

a r e   t he   ve loc i ty  and acce lera t ion  of the  attachment  point , respec t ive ly ,  

Examination of the   th ree   in tegra ls  on the   r i gh t   s ide  of Eq. 4 leads  us t o  

conclude t h a t   y ( t )   v a r i e s   r o u g h l y   a s   a o ( t ) ,   v o ( t )  and x ( t )  f o r  low- 

frequency ( w  << wO2) , intermediate -f requency ( U) TV u ) ~ )  , and  high-frequency 

(f >> (u,2) input  motions , respec t ive ly .  

2 0 

From the above  development, we conclude that ,   based on the  highest  

natural   frequency of a small attached  system, w e  need  not  be  concerned 

with  intermediate- and high-frequency  shel l   accelerat ion components or with 

high-frequency  shel l   veloci ty  components a t   the   system's   a t tachment   point .  

This i s  for tuna te  , since , as  we will observe i n  Chapter 2, high-frequency 

inaccuracies  appear  in computed accelerat ion  his tor ies   before   they  appear  

in  the  corresponding  velocity  histories;   high-frequency  inaccuracies  rarely 

appear   in  computed displaceme.nt h i s t o r i e s .  

In  connection  with  the second  use,  that of p red ic t ing   f a i lu re  or sur- 

v i v a l  of t h e   s h e l l   i t s e l f ,  it i s  c l ea r   t ha t   t he   quan t i t i e s  of i n t e r e s t   a r e  

e i t h e r   s t r e s s e s  or s t r a i n s .  These q u a n t i t i e s   a r e   s i g n i f i c a n t   o n l y   t o   t h e  

ex ten t   tha t   they  corribine i n  such a say s o  a s   t o   r e a c h  a f a i l u r e   c r i t e r i o n ,  

and, i n  almost a l l  problems , a few of them g rea t ly  exceed  the  others  in 

magnitude. Hence, judgements regarding  the  accuracy of s t r e s s / s t r a i n  com- 

putations  should  be  based more upon considerations  regarding peak values of 

s i g n i f i c a n t   s t r e s s e s / s t r a i n s  and times of cccurrence of the  peak  values  than 

upon response  detai ls .  

1-3 



I n  accordance  with  the  preceding  discussion,  conclusions  regarding  the 

accuracy of f ini te   difference  computat ions w i l l  be  based upon displacement, 

veloci ty ,   accelerat ion,   and  s t ress /s t ra in   responses .  It w i l l  generally  be 

assumed t h a t  i f  a series of f ini te   difference  computat ions  appropriate  t o  a 

sequence of decreasing mesh s i zes   exh ib i t  convergence  with  respect t o   t h e  

response  quant i t ies  of i n t e re s t ,   t hen   t he  converged so lu t ions   cons t i t u t e  

accurate  reproductions of the   t rue   so lu t ions  of the  governing  different ia l  

equations.  This  assumption w i l l  be  supported i n  many cases  through com- 

parisons  with  other  types of s o l u t i o n s   t o   s p e c i f i c  problems  and  through 

ana ly t i ca l   s tud ie s  of convergence. 

1 

1.2  EQUATIONS OF SHELL THEORY 

The f ini te   difference  computat ions of t h i s   r epor t   a r e   based  on the 

l i n e a r   e l a s t i c   e q u a t i o n s   f o r   t h i n   s h e l l s .  There exis t   var ious  equat ions 

of th i s   type   ( see ,   e .g . ,   Refs .  3-6); a l l  of t he   va r i e t i e s  have the  common 

cha rac t e r i s t i c   t ha t   t hey  admit e r ro r s  of order  h/a in   the   per t inent   energy  

expressions,  where h i s  a cha rac t e r i s t i c   she l l   t h i ckness  and a i s  a char- 

a c t e r i s t i c   r a d i u s  of curvature .  On th i s   bas i s ,   t hen ,   t hey  may a l l  be  con- 

s idered  equivalent .  The f i n i t e   d i f f e r e n c e  code  employed herein,   the  STAR code, 

i s  based   in   par t icu lar  on the  equations of Ref. 6 .  Although  these  equations 

are  thoroughly  discussed  in  Ref.  6, it i s  he lpfu l   for   d i scuss ion   purposes   to  

spec ia l ize   here   to   the   case  of t he   c i r cu la r   cy l ind r i ca l   she l l .  For t h i s   ca se ,  

the  per t inent   s t ra in-displacement   re la t ions  are  

1-4 



where e and f denote  extensional and f l exura l   s t r a ins ,   r e spec t ive ly ,  

and the   per t inent   cons t i tu t ive   equat ions   a re  

* 

The no ta t ion   fo r  Eqs . 5 and 6 i s  def ined   in   the  f o l l a r ing   f i gu re .  

Density 
Young's modulus 
Poisson's ratio 

The introduct ion of Eqs. 5 and 6 in to   t he   appropr i a t e   s t r a in  and k ine t i c  

energy  expressions,  and  the  subsequent  application of Hamilton's  principle 

(see,  e.g., R e f .  7 )  yield  the  so-cal led  Euler   equat ions,  or the  equations 

of motion f o r   t h e   s h e l l  

* 
Since  the  f lexural  terms  correspond to   t he   Be rnou l l i -Eu le r   t heo ry   fo r   t he  
f lexural   deformation of beams, a theory which leads t o  equations of t h i s  
type i s  sometimes r e f e r r e d   t o   a s  a Bernoulli-Euler  theory. 



i s  the   p l a t e   ve loc i ty   fo r   t he   she l l   ma te r i a l ,  and p a , Pp ? and Pz a re  

su r face   t r ac t ions   i n   t he  a- , p- , and z-direct ions,   respect ively.  The 

i n i t i a l  and  boundary condi t ions   tha t   a re   necessary   for   the  complete descr ip-  

t i o n  of a problem will not  be  given  here  (see, e .g.,  Ref. 7 ) .  

I f  an exc i t a t ion  i s  such that f l e x u r a l   e f f e c t s   a r e   n e g l i g i b l e   i n   t h e  

response of the   she l l ,   then   a l l   t e rms   mul t ip l ied   by  h2/12a i n  Eqs. 7 
may be  dropped.  This  yields  the  equations of motion for   the   so-ca l led  mem- 

brane  shel l .  If  an exc i t a t ion  i s  such   t ha t   f l exu ra l  wave lengths  on the 

order of the   she l l   th ickness   a re   p resent   in   the   she l l   response ,   then   th in  

shel l   (Bernoul l i -Euler)   theory i s  no longer  adequate. One might then employ 

the  equations of improved theory,  which take   in to   account   the   e f fec ts  of 

transverse  shear  deformation and r o t a t o r y   i n e r t i a .  These  equations may be 

obtained  in  a manner s i m i l a r   t o   t h a t  used t o   o b t a i n  Eqs . 7 (see,  e .g.,  Ref. 8) .  
For our purposes, it i s  only  necessary t o  note   that ,   whi le   the  extensional  

s t ra in   express ions   for   th i s   theory   a re   those  of Eqs . 5 ,  t h e   f l e x u r a l   s t r a i n  

expressions  are 

2 
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where the  shell ro t a t ions  cp and Jr become -aw/act and -(l/a)(aw/ag + v) ,  

r e spec t ive ly ,   i n   t he  limit of long   s t ruc tura l  wave lengths .  
* 

1.3 VARIOUS NUMERICAL METHODS OF SOLUTION 

Because l i n e a r  dynamic she l l   equa t ions   a r e   gene ra l ly   f a r   t oo  compli- 

cated t o   y i e l d   t o   d i r e c t   s o l u t i o n   i n   c l o s e d  form,  numerical methods of 

solut ion have  been extensively employed. The most common of these  

have been   t he   f i n i t e   d i f f e rence  method, t h e   f i n i t e  element method, 

the method of modal superposit ion  and  the method of cha rac t e r i s t i c s .  

The f i n i t e   d i f f e r e n c e  and f i n i t e  element methods both impose a g r id -  

work on the  shel l ,   replace  the  cont inuous  shel l   wi th  a d i s c r e t e  model, and 

solve a s e t  of a lgebraic   equat ions.  The two methods d i f f e r   i n   t h a t   t h e  

f i n i t e   d i f f e r e n c e  method d iscre t izes   the   govern ing   par t ia l   d i f fe ren t ia l  

equat ions  for   the  cont inuous  shel l ,   whi le   the  f ini te   e lement  method d i s -  

c r e t i z e s  the s h e l l   i t s e l f ,   r e p r e s e n t i n g  it as   an assemblage of p l a t e  or 
shell   elements,   each of which i s  described  by a f i n i t e  nuniber @ dependent 

va r i ab le s .  Temporal v a r i a t i a n  i s  gene ra l ly   t r ea t ed   i n   bo th  methods with 

step-by-step  numerical   integration  techniques.  

The method of modal superposit ion f i r s t  solves  the  eigenvalue problem 

associated  with the homogeneous equations of motion in   conjunct ion  with  the 

* 
Since   the   f lexura l  terms correspond t o   t h e  Timoshenko t h e o r y   f o r   t h e   f l e x -  
ural   deformation of beams, a she l l   t heo ry  which inc ludes   the   e f fec ts  of 
transverse  shear  deformation and r o t a t o r y   i n e r t i a  i s  sometimes r e fe r r ed  
t o   a s  a Timoshenko theory.  
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governing  boundary  conditions. The r e s u l t i n g   s h e l l  modes are then  used t o  
construct   the   forced motion of the   she i l   by   l inear   superpos i t ion .  The method 

of charac te r i s t ics   requi res   hyperbol ic   she l l   equa t ions  (Eqs .  7 a r e  of the 

parabol ic   type  with  regard  to   f lexural   motion)  and therefore  makes use of 

improved  (Timoshenko) she l l   t heo ry .  The she l l   equa t ions   a r e   t hen   r ecas t   i n  

terms of the   appropr ia te   charac te r i s t ics  and solved  numerically. 

* 

All of the above  methods share a common f a i l i n g ,  namely, the  use of a 

f i n i t e  number of response  var iables   to   represent   cont inuous  funct ions.   Their  

success  depends , therefore ,  upon the   ra te  of convergence of their   numerical  

so lu t ions   w i th   r e spec t   t o   f i n i t e   i nc reases   i n   t he  number of response  variables 

(degrees-of-freedom) and the   e f f ic iency   wi th  which they   e f fec t   the   necessary  

computations f o r  a given number  of response  variables.  Generally  speaking, 

t h e   f i n i t e   d i f f e r e n c e  and f i n i t e  element methods are  numerically  the most 

e f f i c i e n t   f o r  a given number of response  variables;   the method of modal 

superposit ion i s  l e s s   e f f i c i en t ,   bu t   o f t en   r equ i r e s  a smaller number of r e -  

sponse var iab les  and provides modal information  that  need only  be  generated 

once for  multiple  response  computations;  the method of cha rac t e r i s t i c s  i s  

t h e   l e a s t   e f f i c i e n t  method, but,  because it embodies the   essent ia l   charac te r -  

i s t i c s  of wave propagation  behavior, it can accu ra t e ly   t r ea t   sno r t  wave length 

response , including  response  discont inui t ies .  Thus , a dec i s ion   a s   t o  which 

method should  be  used t o  solve a pa r t i cu la r  problem  can only be  based on the  

nature of the  problem i t s e l f .  (For a comprehensive  assessment of current  

she l l   ana lys i s   capabi l i ty ,   see   Ref .  9.) 

1 . 4  THE STAR CODE: DESCRIPTION AND APPLICATION 
. .  - " .  

The STAR (Shel l   Transient  Asymmetric  Response ) computer  program  can  be 

used f o r   t h e  two-dimensional,  nonlinear,  transient  response  analysis of in -  

e las t ic   she l l s   wi th   unre inforced   cu touts .  A detai led  discussion of the code 

i s  given i n   t h e   U s e r ' s  Manual f o r  STAR (Ref. 10). Improvements made i n   t h e  

code a s   pa r t  of the  present   s tudy  are   descr ibed  in  Appendix A .  

3f- 
For complicated  geometries,  the homogeneous equations of motion are   usual ly  
so lved   wi th   f in i te   d i f fe rence  or f i n i t e  element  methods. 
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The STAR code i s  based on the   genera l   th in   she l l   equa t ions  of R e f .  6, 
which inc lude   nonl inear .   gemet r ic  terms, and on a set  of cons t i t u t ive  equa- 

t i o n s   f o r  a temperature-dependent,  work-hardening  material.  Lines of p r in -  

c ipal   curvature   are   used for the   curvi l inear   coordinates  (a,p) of the  middle 

surface of t h e   s h e l l .  (See  Appendix A fo r   no ta t ion  and sign  conventions. ) 
The basic  solution  procedure employed by   the  code i s  as   fol lows.  The govern- 

i n g   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  of motion are  reduced t o  a set of time- 

dependent  ordinary  differential   equations  by  the  application of two-dimensional 

f in i te   d i f fe rence   approximat ions   for   der iva t ives  w i t h  r e s p e c t   t o   t h e   s h e l l ' s  

middle  surface  coordinates a and p . An e x p l i c i t   ( c e n t r a l )   f i n i t e   d i f f e r -  

ence  numerical   integration scheme i s  then employed f o r   t h e   s o l u t i o n  of t he  

ord inary   d i f fe ren t ia l   equa t ions .  

Solutions  obtained with t h e   e x p l i c i t  scheme are   numerical ly   s table  if 

the  t ime  step A t  i s  not   greater   than some c r i t i c a l  Value, atcr. In   t he  

present  study i s  computed from  (Ref. 11) Atcr 

where w i s  the  highest   natural   f requency  for   the  discrete   system ob- 

ta ined from the   f i n i t e   d i f f e rence   r ep resen ta t ion  of the  shel l   equat ions.  

Expressions  for appropriate t o  uncoupled extensional  and  bending 

v ibra t ions  of a f l a t   p l a t e   a r e  given in   Sec t ion  3.1. From those  expressions 

and the above equation, we obta in   the   fo l luwing   c r i t i ca l   t ime  s teps  

and Atc, corresponding t o   e x t e n s i o n a l  and f l exura l   p l a t e   v ib ra t ions ,  

respec t ive ly  : 

max 

wmax 

E 
Atcr F 



following  consideration.  Let h denote a c h a r a c t e r i s t i c   s t r u c t u r a l  wave 

length  appropriate   to   nondispersive,  axisymmetric'.wave  propagation i n   t h e  

s h e l l .  Then, f o r  problems with  in-plane  exci ta t ions,  was s e l e c t e d   i n  

accordance  with  the  cri terion Aa/h << 1. It was f o u n d   t h a t   t h i s   c r i t e r i o n  

cons is ten t ly  gave  good r e s u l t s ,  s o  it s e r v e d   a s   t h e   b a s i s   f o r   a l l  problems 

characterized  by  predominantly  in-plane  excitations.  

For problems with  transverse  loadings,  ~a was selected  in  accordance 

wi th   the   c r i te r ion   tha t  Aa/h N 1 , where h i s  the   she l l   th ickness .  A 

more sophis t icated method f o r  choosing A~CU evolved  during  the  course of 

the  present  study.  This method i s  discussed  in  Chapter 3. In   the   so lu t ion  

of asymmetric  problems, the mesh a s p e c t   r a t i o  (Aol/aAp) was s e l e c t e d   t o  be 

on the  order of uni ty .  

One of the  major  considerations  used i n   t h e   s e l e c t i o n  and execution of 

the  problems of the  next  chapter was that  the  computation  time for a s ingle  

problem  should  be  less  than  five  minutes. The following  approximate  ex- 

pression was used t o  estimate  computation  times on the  Univac 1108 fo r   bo th  

axisymmetric and asymmetric  response  problems : 

COMPUTATION TIME IN m m s  = n n n /bo00 
D e t  

(11 1 

where n and n a r e   t h e  number of mesh p o i n t s   i n   t h e  and p 
direct ions,   respect ively,  and n i s  the nurdber  of t ime  points .  t 

CY B 

It should  be  emphasized that the  scope of t he  STAR code (see  Ref. lo) 

i s  apprec iab ly   b roader   than   tha t   requi red   for   the   c lass  of problems  con- 

sidered  herein,  namely, the  l inear,   isotherma1,transient  response of con- 

s tan t - th ickness ,   e las t ic ,   i so t ropic   cy l indr ica l  and con ica l   she l l s .  Hence, 

run  t imes  for  the STAR code w i l l  general ly   be  higher   than  those  for   cmputer  

programs t h a t   a r e   s p e c i f i c a l l y  developed f o r   t h i s   c l a s s  of problems. 

* 
If a Ap < Aa, AD and a A$ are   interchanged  in   the f i r s t  of Eqs . 10. 
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Chapter 2 

NUMERICAL STUDY OF CONVERGENCE 

I n  this chapter, we investigate  numerically  the  convergence of f i n i t e  

d i f fe rence   t rans ien t  wave propagation  computations. Because we a r e   p r i -  

mari ly   interested  in   propagat ion  a long  the  meridional   coordinate ,  most of 

the  cases  involve  axisymmetric  response,  although  problems  with  gentle 

asymmetry a re   a l so   i nc luded .  

To f a c i l i t a t e  our  study, l e t   u s   de f ine   fou r   exc i t a t ion   c l a s s i f i ca t ions .  

The f i r s t  c l a s s i f i c a t i o n  i s  (z, r), which inc ludes   exc i ta t ions   tha t   a re  

broad  in  the  meridional  dimension a and gradual  in  the  temporal  dimension 

t .  The second c l a s s i f i c a t i o n  i s  (& r), which cons is t s  of exc i ta t ions  

t h a t   a r e  narrow i n   b u t   g r a d u a l   i n  t .  The t h i r d  i s  (z, t), which in-  

eludes exc i t a t ions   t ha t   a r e   b road   i n  (Y bu t   ab rup t   i n  t .  The f i n a l  
c l a s s i f i c a t i o n  i s  (G, x),  which cons is t s  of exc i t a t ions   t ha t   a r e   na r rm 

i n  (Y and a b r u p t   i n  t .  All non-axisymmetric exc i ta t ions   to   be   cons idered  

are   broad  in   the  c i rcumferent ia l   d imension p .  

* 
+ 

I n   o r d e r   t o   d e s c r i b e  more prec ise ly   these   c lass i f ica t ions ,  w e  define a 

"spa t ia l ly   b road ' '   exc i ta t ion   as  one tha t   conta ins  no s p a t i a l   d i s c o n t i n u i t i e s  

on an unbounded domain or one whose c h a r a c t e r i s t i c   s p a t i a l  dimension  con- 

s iderably  exceeds  the  shel l   th ickness;  we define a "temporally  gradual'' 

exc i t a t ion   a s  one that  produces  no  temporal  discontinuities  in  the  velocity 

response of t h e   s h e l l  or one  whose characteristic  temporal  dimension  con- 

siderably  exceeds  the  transit   t ime of an extensional  wave through  the  shel l  

thickness .  The terms  "spatially  narrow" and "temporally  abrupt"  are,  of 

course,   just   the  opposite of the  above de f in i t i ons .  Because the  imposit ion 

of boundary  conditions i s  equ iva len t   t o   t he   app l i ca t ion  of l i n e   l o a d s   t o  a 

she l l ,  any disturbance  reaching a s h e l l  boundary  gives  rise t o  an exc i t a t ion  

t h a t  i s  s p a t i a l l y  narrow i n   t h e   d i r e c t i o n  normal t o   t h e  boundary. Also, 
spec i f i ca t ion  of an   i n i t i a l   ve loc i ty   cond i t ion   cons t i t u t e s   t he   app l i ca t ion  

of a temporal ly   abrupt   exci ta t ion.  

The p r i n c i p a l   r e s u l t s  of th i s   chapter   a re  summarized i n  Table 1 on page 2-19. 

* 
Actua l ly ,   exc i t a t ions   i n   t h i s   c l a s s i f i ca t ion  w i l l  no t   be   spec i f ica l ly  con- 
sidered.  This i s  because   the   s tud ies   per ta in ing   to   the   o ther   c lass i f ica t ions  
demonstrate t h a t  6, y ) -  excitations  present  no  convergence  problems. 

2-1 



2.1 DISPLACEBENT,  VELOCITY AND ACCELERATION RFSPONSE TO IN-PLAN3  EXCITATION 

I n  this  sect ion,  w e  examine convergence of the  kinematic   quant i t ies  

appropr ia te   to   in -p lane  or, more spec i f i ca l ly ,   l ong i tud ina l   exc i t a t ion  of 

c y l i n d r i c a l   s h e l l s .  

2 .1 .1  (a, r) - Excitat ions 4 

The f i r s t  example involves  an (z, r) - exci ta t ion   in   the   form of a 

specified  bell-shaped  end-displacement whose temporal  width i s  approximately 

e q u a l   t o  a/2c . Thus, as   d i scussed   in  Appendix B, (k a )  >> 1, where k 

i s  the  wave  number c h a r a c t e r i s t i c  of t he   l ong i tud ina l   s t r a in ,  and a bell-shaped 

displacement wave propagates  with  negligible  dispersion down t h e   s h e l l   a t   t h e  

p l a t e   ve loc i ty  c .  

* 2 

€ L 

Fig .  1 shows displacement,   velocity and a c c e l e r a t i o n   h i s t o r i e s   a t  

a/L = p . We see  that ,   because of the  nature  of the   exc i ta t ion ,   t ak ing  a time 

derivative  roughly  halves  the  characterist ic wave length  = 2rr/k.  Thus, 

the   coarse   f in i te   d i f fe rence  mesh i s  sat isfactory  for   displacement  computa- 

t i ons   bu t  i s  marginal  for  velocity  computations and unsa t i s f ac to ry   fo r  

acceleration  computations.   Fig.  2 shows displacement,   velocity and accelera-  

t i on   snapsho t s   a t   c t / a  = 0.533. Because of the  non-dispersive  propagation, 

each  response  snapshot i s  e s s e n t i a l l y  a l a t e ra l ly   d i sp l aced  mirror image of 

t he   co r re spond ing   h i s to ry .   Th i s   desc r ip t ion   ho lds   a t   l a t e r   t imes   a l so ,   a s  

i nd ica t ed   i n   F ig .  3 ,  which shows snapshots a t   c t / a  = 2 . l32.  Comparing 

F igs .  2 and 3 ,  we d e t e c t ,   f o r  a f ixed  mesh width, a gradual   de te r iora t ion  

in   accuracy  as   t ime  increases .  

1* 

The second  example also  involves  an (& t") - exc i t a t ion   i n   t he  form 

of a specified  bell-shaped  end-displacement.   In  this  case,  however, 

k a -1, and the  wave su f fe r s   s ign i f i can t   d i spe r s ion   a s  it propagates down 

the   she l l   ( see  Appendix B ) .  F ig .  4 shows displacement,   velocity and 
€ 

* 
All the  examples d i scussed   i n   t h i s   chap te r   a r e   desc r ibed   i n   de t a i l   i n   Tab le   2 .  

** 
Because,  from  Appendix B, 4 M - v(c/a)u,  a radial   response  quant i ty  i s  
smoother than  the  corresponding  longitudinal  response  quantity.  Furthermore, 
radial   response i s  much smaller  than  the  corresponding  longitudinal  response 
fo r   l ong i tud ina l   exc i t a t ion .  Thus, only  longi tudinal   response  quant i t ies  
a re  shown. 

2-2 



a c c e l e r a t i o n   h i s t o r i e s   a t  dL = 0.24 . Basing  the mesh width t o   c h a r a c t e r -  

i s t i c  wave l e n g t h   r a t i o ,  A& , on response appropriate t o  non-dispersive 

propagation, w e  s ee   t ha t   t he  convergence  behavior of t h e   f i n i t e   d i f f e r e n c e  

computations i n   t h e  example i s  s imi l a r   bu t   s l i gh t ly   supe r io r   t o   t ha t  ob- 

served i n  F ig .  1. This  judgement i s  further  supported  by  the  response  snap- 

shots  shown i n   F i g s .  5 and 6.  From Figs .  1-6, therefore  , w e  conclude t h a t  

the  convergence of f ini te   difference  computat ions of displacement,   velocity 

and acceleration  response  appropriate t o  in-plane (& ?’) - exc i t a t ion  i s  

s a t i s f a c t o r y  i f  Aa/h 2 1/20. 

* 

The two preceding  examples  pertain t o  (z,  r) - exci ta t ions  that a re  

temporally  quite  gradual and possess   re la t ive ly   wel l   def ined   charac te r i s t ic  

temporal wave lengths .   Let   us  now consider an  example i n  which the   exc i ta -  

t i o n  i s  s i g n i f i c a n t l y   l e s s   g r a d u a l  and possesses   no  readi ly   ident i f iable  

temporal wave length,  v i z  ., the  ramp loading  case  described  as Example 3 i n  

Table 2 .  This   exci ta t ion  const i tutes  somewhat of an  extreme t e s t   fo r   i n -p l ane  

(z, r) - e x c i t a t i o n s   i n   t h a t  i t  produces a d i scont inui ty   in   longi tudina l  

she l l   a cce l e ra t ion .   F ig .  7 presents  displacement,   velocity and acce lera t ion  

h i s t o r i e s   a t   a l a  = 1. We observe  that,  because of t he   d i scon t inu i ty   i n  

l ong i tud ina l   she l l   a cce l e ra t ion ,  convergence of t h e   f i n i t e   d i f f e r e n c e  com- 

putations  for  that   quantity  are  only  marginal;   computations of the  other  

kinematic   quant i t ies   are   sat isfactor i ly   convergent .   This   observat ion  a lso 

a p p l i e s   t o   F i g .  8, which shows displacement,   velocity and acce lera t ion  

snapshots a t   c t / a  = 2 .  Both of t hese   f i gu res   d i sp l ay   o sc i l l a t ions   i n   t he  

computed acceleration  records  that   are  characterized  by  non-dimensional 

s p a t i a l  and  temporal  wavelengths of approximately  =&a.  This phenomenon 

i s  analogous t o   t h e   f a m i l i a r  Gibbs phenomenon in   Four i e r   s e r i e s   so lu t ions .  

2.1.2 (a, t‘) - Exci ta t ions  
N 

The next example (Example 4) involves  an (a, 3) - exc i t a t ion   i n   t he  
N 

form of a l ong i tud ina l   impu l s ive   l oad ing   t ha t   g ives   r i s e   t o   t he   i n i t i a l  

* 
Because  kea- 1, the   rad ia l   response   quant i t ies   a re  comparable i n  magnitude 
t o  the   longi tudina l   response   quant i t ies .  The former  are a t   l e a s t   a s  smooth 
as t h e   l a t t e r ,  however, s o  tha t   aga in  it i s  s u f f i c i e n t   t o   d i s p l a y   o n l y   t h e  
longi tudinal   response  quant i t ies .  
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veloc i ty   d i s t r ibu t ion   descr ibed   in   Table   2 .  A s  d i scussed   i n  Appendix B, 

(k  a )  >> 1 , SO t h a t   t h i s  example cons t i tu tes   an   essent ia l ly   non-d ispers ive  

wave propagation  problem.  Fig. 9 shows displacement,   velocity and accelera-  

t i o n   h i s t o r i e s   a t  a dis tance a/L = 0.21 t o   t h e   r i g h t  of the  plane of loading 

anti-Sp.uIIetry. We observe  that ,   for  a given Aa/), - r a t i o ,  convergence  be- 

havior i s  about  the same f o r  this (z, 2 )  - exc i t a t ion  as it i s  f o r   t h e  (& y )  
exc i t a t ion  of Example 1. In   o rde r   t o   a s su re   ou r se lves   t ha t   s a t i s f ac to ry  con- 

vergence  for a l l  kinematic  quantit ies  can  indeed  be  attained, we examine Fig.  

10, which presents  displacement,   velocity and acce lera t ion   snapshots   a t  

c t /a  = 0.2132  and  0.8528. 

2 
E 

The f i f t h  example a l so   dea l s   w i th  an (z, 3) - exc i t a t ion   i n   t he  form 

of a longitudinal  impulsive  loading which  produces  an i n i t i a l   v e l o c i t y  

condi t ion.   In   this   case,  however, k a N 1 (Appendix B ) ,  s o  tha t   t he  wave 

propagated  a long  the  shel l   suffers   s ignif icant   dispers ion.   Fig.  11 pre-  

sents   longi tudinal   d isplacement ,   veloci ty  and a c c e l e r a t i o n   h i s t o r i e s   a t  a 

dis tance a/L = 0.12 t o   t h e   r i g h t  of the  plane of loading  anti-symmetry. 

The f igu re   i nd ica t e s   t ha t  convergence i s  s a t i s f a c t o r y   f o r   a l l   q u a n t i t i e s  

when Am/), << 1. This i s  supported  by  Fig.  12,  which shows displacement, 

ve loc i ty  and acce le ra t ion   snapsho t s   a t   c t / a  = 1.91 and 5.73. A t  the  

e a r l i e r  t ime,   dispers ion  effects  have not   yet  become s ign i f i can t ,  s o  t h a t  

the  non-dispersive  curves shown in   the   f igure   cons t i tu te   accura te   represen-  

t a t i o n s  of the  t rue  response.   This  i s  no  longer  the  case,  however, a t  

c t /a  = 5.73. 

€ 

As Example 6, we examine an (z, 6 )  - exc i t a t ion  which g i v e s   r i s e   t o  - 
discont inui t ies   in   longi tudina l   acce le ra t ion ,  i .e. , we consider  the saw- 

tooth  impulse  loading  described  in  Table  2.  Displacement,  velocity and 

a c c e l e r a t i o n   h i s t o r i e s   a t   a l a  = 2 and snapshots a t   c t / a  = 2 a r e  shown 

i n   F i g s .  13 and 14, respect ively;   these  display  the same margina l   (a t   bes t )  

convergence in   the  accelerat ion  computat ions  that  was observed i n   t h e  

(G, r) - exc i t a t ion  example of F igs .  7 and 8. 

2.1.3 (z, X) - Exci ta t ions  

The seventh example deals  with  an (G, 3) - exci ta t ion ,   v iz  ., a s t e p  

end-veloci ty   exci ta t ion.  Because of t he   d i scon t inu i ty   i n   l ong i tud ina l  

shel l   veloci ty ,   the   f ini te   difference  computat ions  for   that   quant i ty ,   as  
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s h a m   i n   F i g s .  15 and 16, are only  marginally  convergent.  Furthermore, 

because  the  accelerat ion  can  only  be  def ined  in   terms of a generalized 

funct ion ( v i z . ,  the   Di rac   de l ta - func t ion)   a t   the  wave f ron t ,  computations 

of t ha t   quan t i ty   by   t he   f i n i t e   d i f f e rence  method (o r ,   i n   f ac t ,   by   o the r  

numerical  methods) are unsa t i s fac tory .  

The f i n a l  example of t h i s   s e c t i o n  (Example 8)  involves a non- 

axisymmetric (2, 3) - e x c i t a t i o n   i n   t h e  form of a s tep  end-veloci ty   dis-  

t r i bu ted  as cos $ f o r  - 2 5 $ 5 n/2. Figure 17 shows displacement,   velocity 

and accelerat ion  snapshots  a t  c t /a  = 2, $ = 0 and 90'. Comparing t h i s   f i g u r e  

with  Fig.  15, w e  observe  that ,   for aAp/h << 1, the  presence of g e n t l e   a s p -  

metry  has  no  effect  on general  convergence  behavior. The gen t l e   bu t   d i s t i nc t  

asymmetry i s  i l l u s t r a t e d   i n   F i g .  18, which shows kinematic  response  snapshots 

a t   c t / a  = 2 and  a/a = 1. 

P 

2.1.4 Conclusions 

From Figs .  1-18, we draw the  fol lowing  conclusions  regarding  thin 

s h e l l   f i n i t e   d i f f e r e n c e  computation of she l l   response   to   in -p lane   exc i ta t ion .  

F i r s t ,  we conclude t h a t  computations of kinematic  response  quantit ies  appro- 

p r i a t e   t o  (& r) -, (;, t') -, and therefore  (;, r) - exc i t a t ions   a r e   s a t i s -  

fac tor i ly   convergent   as   long   as   the   ra t io  of each   spa t ia l  mesh dimension t o   t h e  

shor tes t   cor responding   charac te r i s t ic   spa t ia l  wave length of the  response i s  much 

less   than   un i ty .  The value of t h e   r a t i o   r e q u i r e d  i s  determined  by  the  length 

of time f o r  which solut ions  are   desired;   the   longer   the  t ime,   the  smaller  

t h e   r a t i o  must be .  Second, we conclude t h a t   i f  an exc i t a t ion  produces a 

d i scon t inu i ty   i n  a response  quant i ty ,   the   f ini te   difference  computat ion of 

t ha t   quan t i ty  w i l l  b e   a t   b e s t  only  marginally  convergent due t o   t h e   a p p e a r -  

ance of a type of Gibbs' phenomenon. Th i rd ,  we conclude t h a t   t h e   f i n i t e  

d i f fe rence  method cannot  be  used t o  compute the  acceleration  response of 

a s h e l l   s u b j e c t e d   t o  an in-plane (z, 3) - exc i t a t ion .  A s  a f i n a l   n o t e  : It 

i s  f i t t i n g  that fini te   difference  computat ions of s h e l l  response  appropriate 

t o  (2, q) - excitations  possess  about  the same convergence  behavior  as  those 

a p p r o p r i a t e   t o  (z, 3 )  - excitations.   Finite  difference  computations of an 

(z, 3) - generated wave t h a t  i s  r e f l ec t ed  from a s h e l l  boundary a re   t he re fo re  

a s   a c c u r a t e   a f t e r   r e f l e c t i o n   a s   t h e y   a r e   b e f o r e   r e f l e c t i o n .   T h i s  i s  because 

the   r e f l ec t ion  of an (z, 3) - generated wave by a s h e l l  boundary d i r e c t l y  
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corresponds to   t he   supe rpos i t i on  of two waves: t h e  (z, F) - generated 

wave propagating i n   t h e  absence of a boundary  and  an (z,  r) - generated 

wave p r d u c e d   a t   t h e  boundary  through  the enf'orcement of the  boundary 

condi t ion.  

2.2 DISPLACEMENT, VELOCITY AND ACCELERATION RESPONSE TO TRANSVERSE EXCITATION 
~ . . "  . " -~ ~ 

The propagation of waves generated  by  transverse  excitations i s  charac- 

ter ized  by  severe  dispers ion.  We are  therefore  denied  here  the  simple 

s p a t i a l  wave length  descr ipt ions embodied i n  many  of the  preceding  examples. 

Thus we deal  immediately  with  transverse  excitations  that   introduce  no 

well-defined  characterist ic  temporal or s p a t i a l  wave lengths ,   bu t  which 

are  mathematically  simple. 

2.2.1 ( G ,  r) - Excitat ion 

The f i r s t  example of t h i s   s e c t i o n ,  Example 9, involves   the (z, c) - 
exc i t a t ion  of a clamped-clamped cy l ind r i ca l   she l l   by  a uniform, r a d i a l   s t e p -  

pressure.   That   this  problem cons t i tu tes  a simple (& r) f l e x u r a l  wave 

propagation  problem i s  shown by  the  following  argument.  Consider  an  in- 

f i n i t e   s h e l l   e x c i t e d  over i t s  entire  length  by  the  uniform  step-pressure;  

i t s  response i s  given  by w ( a , P , t )  = w ( t )  = (Poa  /phc ) (1 - cos   c t /a ) ,  

where Po i s  the  magnitude of the  pressure  s tep.  Now consider   an  ident ical  

in f in i te   she l l   exc i ted   ax isyrmnet r ica l ly   a t  a = 0 and (Y = L by  the  pre- 

scribed  radial   displacements w ( 0 ,  p , t )  = w(L, p , t  ) = - w , ( t ) .  Since  the 

combination of these two  problems yields  the  problem of Example 9, and 

s ince   the   un i formly   exc i ted   in f in i te   she l l  problem  embodies  no f l e x u r a l  

wave e f f e c t s ,  Example 9 does cons t i t u t e  a simple (2, r) f l e x u r a l  wave prop- 

agation  problem. 

2 2  
m 

Fig .  19 shows displacement,  velocity, and a c c e l e r a t i o n   h i s t o r i e s   a t  

d L  = - f o r  Example 9.  We see  that ,   while  displacement and velocity  con- 

vergence may be  termed sa t i s f ac to ry ,  convergence of the   acce le ra t ion  com- 

putat ions is ,  a t   best ,   marginal .   This   convergence  diff icul ty  i s  analogous 

1 * 
2 

* 
Longitudinal  responses computed a t   o t h e r   s t a t i o n s   a l o n g   t h e   s h e l l  proved 
t o  be  smaller and general ly  smoother than  the  corresponding  radial   responses.  
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t o   t h a t  of the  previous  section,  which was associated  with a d i scont inui ty  

a t   t he   ex t ens iona l  wave f r o n t .  A s  impl ied   in   Sec t ion  1.3, we cannot  assoc- 

ia te   the   p ropagat ion  of a wave front   with  the  e lementary  (Bernoul l i -Euler)  

f lexural   equat ions.  To do t h i s ,  we employ  improved  (Timoshenko) theory 

that   in t roduces  an  extensional  wave f r o n t   t r a v e l l i n g   a t   v e l o c i t y  

c = [E/~(l-u~]]~/~ and a shear wave f r o n t   t r a v e l l i n g   a t   v e l o c i t y  

c S = f$,/2p(l+v)]1/2, where W, i s  the   shear   fac tor  (0.8 <" W, <. 1.0) .  

On this bas i s ,  w e  see   tha t   the   h igh- f requency   osc i l la t ions  i n  t he  Aa/h = 1 

accelera t ion   h i s tory  of F ig .  19 appear t o  beg in   w i th   t he   a r r iva l  of two 

acce lera t ion   d i scont inui t ies  (one  from  each  end)  that  travel a t  c and 

s imul taneous ly   reach   the   she l l ' s   mid-s ta t ion   a t   c t /a  w 2 (see, e .g.,  Ref. 

13).  A shor t   t ime  la te r ,   the   acce le ra t ion   h i s tory  smooths out,  only t o   b e  

disrupted  again upon the   second  a r r iva l   a t   c t /a  M 6 of the   acce le ra t ion  

d i scon t inu i t i e s ,  which  have  been r e f l ec t ed  from the  ends of t h e   s h e l l .  

This   in te rpre ta t ion  i s  supported  by  the Aa/h = 1 curves of Figs .  20  and 

21, which show displacement,   velocity and accelerat ion  snapshots   a t  

c t /a  = 1.2  and 4.8, respec t ive ly .  The analogy  between th is   behavior  and 

t h a t  of the  previous  subsection i s  more completely  established  by com- 

parison of F igs .  19 and 7. 

S 

While the  Ao/h = 1 computations  appear t o   p r e d i c t   w i t h  some degree 

of accuracy   the   a r r iva l  of an acceleration  discontinuity,   the  computations 

for   o ther   va lues  of  Aa/h e i ther   ignore  i t s  a r r i v a l  or, in   the  case of 

the  Aa/h = - computations , p r e d i c t   t h e   a r r i v a l  of a f l e x u r a l  wave with 

a ve loc i ty  even grea te r   than   the   d i la ta t iona l   ve loc i ty .   This  is in   cont ras t  

to   the   case   involv ing   in -p lane   exc i ta t ion ,  where changes i n  the  value of 

Ao/h Produce  no  such r a d i c a l  changes i n   t h e  computed responses  (see  Fig.  7). 
We conclude,   therefore ,   that   the   less   than  sat isfactory  convergence of the  

f ini te   difference  accelerat ion  computat ions i s  due t o   t h e   i n a b i l i t y  of 

elementary  bending  theory t o   t r e a t   p r o p e r l y   t h e   s h o r t  wave length components 

contained  in   the  accelerat ion  response.  The USE. of a f i n i t e   d i f f e r n e e  code 

based on improved theory  should  mater ia l ly   inprove  this   s i tuat ion,  even 

though  the  problem of dealing  numerically  with a response  discontinuity 

would s t i l l  be  present.  

1 
2 

* 
* 
The modal superposit ion  acceleration  snapshots of F igs .  20 and 21, which a re  
computed f r m  180 m d a l   r e s p o n s e s   a p p r o p r i a t e   t o  improved she l l   theory   (Ref .  15), 
cannot  be  accurate  in  the  vicinity of t he   acce le ra t im   d i scon t inu i ty   e i the r ;  
this problem w i l l  b e   d i s c u s s e d   i n   g r e a t e r   d e t a i l   l a t e r .  
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. . . . .. . "" 

2.2.2 (z, 3) - Exci ta t ion  

The next example, Example 10, involves   the (z, <) - exc i t a t ion  of the  

clamped-clamped c y l i n d r i c a l   s h e l l  of Example 9 by  an  axisymmetric,  triangular 

radial   impulse.   Fig.  22 shows displacement,   velocity and acce lera t ion  his- 

t o r i e s   a t  OJL = - As i n   t he   p rev ious  example,  convergence of the  d i s -  

placement and velocity  computations i s  sa t i s f ac to ry ,  whereas  convergence of 

the  acceleration  computations i s ,  a t   bes t ,   marg ina l .  T h i s  i s  a l s o   r e f l e c t e d  

in   F igs .   23  and 24, which show displacement,   velocity and acceleration  snap- 

s h o t s   a t   c t / a  = 1 .2  and 4.8, respec t ive ly .  We observe   f rom  the   l a t te r   tha t  

the lack  of convergence i n  the acceleration  computations  persists  even  at  

r a the r   l a t e   t imes .  The problem i s  a l l ev ia t ed  somewhat i f  the   d i scont inui ty  

i n   t h e   s p a t i a l   d e r i v a t i v e  of the i n i t i a l   v e l o c i t y   d i s t r i b u t i o n  i s  reduced. 

T h i s  i s  demonstrated i n   F i g .  25,  which presents  displacement,   velocity and 

acce le ra t ion   h i s to r i e s   a t  o/L = f o r   t h e   s h e l l  of Example 10 excited  by 

an axisy-mmetric t r i a n g u l a r   r a d i a l  impulse whose base i s  twice  as wide a s  

tha t   appropr ia te   to   F ig .   22 .  

1* 
2 .  

1 

2.2.3 (G ,  3)  - Exci ta t ions  

We now proceed t o  an example (Example 11) that   involves   an (G,  x )  - 
e x c i t a t i o n   i n   t h e  form of a u n i f o r m  r a d i a l  impulse  applied t o   t h e  clamped- 

clamped c y l i n d r i c a l   s h e l l  of Example 9.  It i s  eas i ly   seen  that the   d i s -  

placement  and velocity  responses of t h i s  example a r e   i d e n t i c a l   t o   t h e  

ve loc i ty  and acceleration  responses,   respectively,  of Example 9 (Figs .  

19-21), Hence the  discussion of the   l ack  of convergence in   t he   acce le ra -  

t i o n  computations of Example 9 d i rec t ly   appl ies   to   the   ve loc i ty   computa t ions  

of t h i s  example. We show the displacement and veloci ty   responses   as  well 

as   an   acce le ra t ion   h i s tory  and two acce lera t ion   snapshots   for   th i s  example 

i n   F i g s .  26-28; these  f igures  demonstrate t ha t  convergence of t h e   f i n i t e  

difference  acceleration  computations i s  c l ea r ly   unsa t i s f ac to ry .  The i m -  

proved  theory modal superposi t ion  computat ions  are   a lso  suspect ,   in  view 

of t he   d i scon t inu i ty   i n   t he   she l l ' s   ve loc i ty   r e sponse .  

* 
Again, longitudinal  responses computed a t   o t h e r   s t a t i o n s   a l o n g   t h e  she l l  
proved t o  be smaller and  generally  smoother  than  the  corresponding  radial 
responses. 
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I n   o r d e r   t o  assess t h e   e f f e c t s  of v a r i a t i o n s   i n  (2, 3) - exci ta t ions ,  

w e  consider  as Example 12 the  problem of the  previous example wi th   the  clamped 

supports  changed t o   f r e e   s u p p o r t s .   D i s p l a c e m n t ,   v e l o c i t y  and acce lera t ion  

h i s t o r i e s   a t  d L  = 1/4 a r e  shown i n   F i g .  29 t o  demonstrate  the  smoothness 

of the   longi tudina l   responses   in   re la t ion   to   the   cor responding   rad ia l   re -  

sponses.   For  these  5oundary  conditions,   longitudinal  response i s  comparable 

i n  magnitude t o   r a d i a l   r e s p o n s e ,  a s i t u a t i o n   t h a t  does  not  occur in   t he   ca se  

of clamped boundaries.   Fig.   30 shows radial   d isplacement ,   veloci ty  and acce l -  

e r a t i o n   h i s t o r i e s   a t  a/L = 1/2;  comparing these  resul ts   wi th  those of F ig .  

26, we see   t ha t   t he  change i n  boundary  conditions has no  e f fec t  on the  con- 

vergence  behavior of the   f in i te   d i f fe rence   computa t ions .   This  i s  a l s o  

demonstrated i n   F i g s .  31 and 32, whicn show disp lacemnt ,   ve loc i ty  and 

acce lera t ion   snapshots   a t   c t /a  = 1.2 and c t /a  = 4.8, respec t ive ly .  

As Example 13, we examine the non-axisymmetric  response of a clamped- 

clamped c y l i n d r i c a l   s h e l l   t o  an (;, 3) - exc i t a t ion   i n   t he  form of a longi-  

tudinal ly   uniform  radial   impulse  that  i s  d i s t r ibu ted   a s  cos $ over  the 

region -n/2 5 $ < n/2. I n   o r d e r   t o   e v a l u a t e   b e t t e r   t h e   e f f e c t s  of gent le  

asymmetry, displacement,   velocity and a c c e l e r a t i o n   h i s t o r i e s   a t  a/L = 0.50 

a re  shown i n   F i g .  33 for  the  associated  axisymmetric problem involving a 

uniform  radial  impulse. The l e s s   t h a n   s a t i s f a c t o r y  convergence of the  ve- 

l o c i t y  and acceleration  computations i s  again  apparent.   Fig.  34 shows d i s -  

placement,   velocity  and  acceleration  histories  for  the  cosine  radial   impulse 

problem a t  a/L = 0.50 and $ = 0. The differences between these   r e su l t s  

and  those of Fig .  33 a re  minor. F ig .  35, which shows corresponding  histories 

a t  a/L = 0.50  and $ = 909 demonstrates t h a t   t h e  convergence  behavior of 

the  axisymmetric  and $ = 0 r e s u l t s   a l s o   c h a r a c t e r i z e s   t h e   r e s u l t s   a t   p o i n t s  

on t h e   s h e l l  that a re   no t   d i r ec t ly   exc i t ed .  The gen t l e   bu t   d i s t i nc t  asym- 

metry of the  cosine  impulse  problem i s  i l l u s t r a t e d   i n   F i g .  36, which shows 

displacement,   velocity and acceleration  snapshots a t   c t / a  = 0.78  and 

a/L = 0.50. The A0(lh = 0.92  and 1.73 r e s u l t s   a g r e e   w e l l   a t   t h i s   e a r l y  

time; from Figs .  34 and 35, however, we s e e   t h a t   t h e s e   r e s u l t s   b e g i n   t o  

diverge a shor t   t ime  la te r .   F ina l ly ,   F igs .  37 and 38 show displacement, 

ve loc i ty  and acce lera t ion   snapshots   a t   c t /a  = 0.78 f o r   t h e  uniform  impulse 

problem  and a t   c t / a  = 0.78, $ = 0 for  the  cosine  impulse problem, 

respec t ive ly .  As with  Figs .  33 and 34, these  computat ions  display  vir tual ly  

2-9 



ident ica l   behavior .  We conclude  from  Figs. 33-38, t h e r e f o r e ,   t h a t   f i n i t e  

difference  response  computations  for  gently  non-axisymnetric  excitations 

d isp lay   the  same convergence  behavior as  those  for  corresponding  axisymmetric 

exc i t a t ions .  

2.2.4 Smoothed Exci ta t ions  

The three  preceding examples  have  demonstrated that,   because of the  

l imi t a t ions  of the  elementary  bending  theory on which  they  are  based and 

because of t h e i r   i n a b i l i t y   t o   t r e a t   p r o p e r l y   r e s p o n s e   d i s c o n t i n u i t i e s ,  

convergence of the  f ini te   difference  computat ions of ve loc i ty  and accelera-  

t ion  responses t o  (2, 3) - exc i t a t ions   a r e   l e s s   t han   s a t i s f ac to ry .  It i s  

of i n t e r e s t ,   t h e n ,   t o  examine  two  methods f o r  modifying  the  excitation s o  

as t o   a m e l i o r a t e   t h i s   s i t u a t i o n .  

The f i r s t  method cons is t s  of smoothing the  exci ta t ion  temporal ly ,  

e .g .  , converting  the  impulsive  loading of Example 12 i n t o  a pressure  load- 

ing  of small, bu t   f i n i t e ,   du ra t ion .  Such a conversion i s  shown as Example 1 4  
i n  Table  2.  Displacement,  velocity and acce lera t ion   h i s tor ies   appropr ia te  

t o   t h e   l o a d   d u r a t i o n   c t  /a = 0.82 a r e  shown i n   F i g .  39. This  duration i s  

much less than  the  per iod  @/a = 277 of the  s inusoidal   response  appropriate  

t o   t h e   a s s o c i a t e d  problem of an   impuls ive ly   exc i ted   in f in i te   she l l .  Hence 

the  displacement  response of F ig .  39 agrees   qu i te   wel l   wi th   tha t  of F ig .  30, 
once the  former i s  moved t o   t h e   l e f t  a d i s t a n c e   c t  /a = 0.41 t o  a l low  for  

tk  f i n i t e   d u r a t i o n  of the  t r iangular   pressure  loading.  Convergence of the 

ve loc i ty  and acceleration  computations of F ig .  39 i s  much b e t t e r   t h a n   t h a t  

of Fig.  30, however; we observe  that  smoothing  even  allows us t o  use the  

ve ry   f i ne  mesh  Aa/h = without  introducing  the  high-frequency  oscil lations 

encountered i n  Aa/h = 1 acceleration  computation of Fig.  30 .  S t i l l   f u r t h e r  

improvement i n  convergence  behavior i s  achieved i f  the  width of t he   t r i angu la r  

pressure  loading i s  i n c r e a s e d   t o   c t  /a = 1.64, a s  shown i n   F i g .  40. If the  

time s h i f t   c t  /a = 0.82 i s  in t roduced   in to   these   resu l t s ,   even   th i s  tempor- 

a l ly   r a the r   b road   exc i t a t ion   cons t i t u t e s  a reasonable  approximation t o   t h e  

impulsive  exci ta t ion of Example 12. 

W 

S 

1 

W 

S 

The e f f e c t s  of temporal  smoothing  are  even more clearly  demonstrated 

i n   F i g .  41, which shows ve loc i ty  and acce le ra t ion   snapsho t s   a t   c t / a  = 1.2 

f o r   t h e   s h e l l  of Example 12.  Shown a re  1) response  snapshots  for a uniform 
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impulse  loading  as computed with  the modal superposit ion method based on 

improved theory, and 2 )  response  snapshots  for a s p a t i a l l y  uniform tri- 
angular  pressure  loading of width c t  /a = 0.40 a s  computed w i t h   t h e   f i n i t e  

difference method based on elementary  theory. From t h i s   f i g u r e  and Fig .  31, 
we see t h a t   t h e r e  i s  much b e t t e r  agreement  between t h e   f i n i t e   d i f f e r e n c e  

responses  appropriate t o   t he   t r i angu la r   p re s su re   l oad ing  and the  modal super- 

posi t ion  solut ions  than  between  the  la t ter  and the   f i n i t e   d i f f e rence   so lu -  

t i o n s   a p p r o p r i a t e   t o   t h e  impulse  loading. 

W * 

The second method f o r  improving  the  convergence of f in i t e   d i f f e rence  

computations of ve loc i ty  and acce lera t ion   responses   to  (2, t") - exc i t a t ions  

cons is t s  of smoothing the   exc i t a t ions   spa t i a l ly .  For  example, we might  con- 

vert  the  uniform  impulsive  loading of Example 12 i n t o  an  axisymmetric  impul- 

sive  loading which cons t i tu tes  a t runcated  Fourier   ser ies   expansion  (s in  mna/L) 

of the  longitudinally  uniform  loading,  as shown a s  Example 15 in   F ig .   42 .  

Displacement ,   veloci ty ,   and  accelerat ion  his tor ies   a t  a/L = - f o r  m = 5 1 
2 max 

are  shown i n   F i g .  43; we observe  that  convergence i s  s a t i s f a c t o r y   f o r   a l l  

th ree   responses .   S imi la r   h i s tor ies   for  mmax = 11 are  shown i n   F i g .  44; 
here we must make ve loc i ty  and acceleration  computations  with Aa/h = 1/2 

t o  demonstrate  satisfactory  convergence.  Fig. 45 shows comparable h i s t o r i e s  

f o r  m = 23; a t   t h i s   p o i n t  we f i n d   t h a t   t h e  convergence of the   d i sp lace-  

ment, ve loc i ty  and acceleration  computations i s  sat isfactory,   marginal  and 

unsat isfactory,   respect ively.  Thus, f o r  m = 23 , we have e s s e n t i a l l y  

the same convergence s i t u a t i o n   a s   t h a t  shown in  Fig.   30  for   the  uniform 

impulsive  loading. 

max 

max 

2.2.5 Conclusions 

From Figs .  19-45, we draw the  fol lowing  conclusions  regarding  thin 

she l l   f in i te   d i f fe rence   computa t ion  of she l l   response   to   t ransverse   ex-  

c i t a t i o n .   F i r s t ,  we conclude  that  computations of displacement and ve loc i ty  

response   appropr ia te   to  ( z ,  r) -, (z, 3) -, and therefore  (z, r) - exc i t a t ions  

a re   sa t i s fac tor i ly   convergent  a s  l ong   a s   t he   r a t io  of each   spa t ia l  mesh 

* 
A time s h i f t  of c t  /a = 0.20  has   been  introduced  into  the  f ini te   difference 
r e s u l t s   t o   p o s i t i o n s t h e  peak of t he   t r i angu la r   p re s su re   l oad ing   a t  t = 0. 
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dimension to   t he   sho r t e s t   co r re spond ing   cha rac t e r i s t i c   spa t i a l  wave length of 

the  response i s  appreciably less than  uni ty .  The convergence of t ransverse 

acceleration  computations, however, i s  only  marginal f o r  (G, r) - and 

(z, 2) - exci ta t ions ,   espec ia l ly  when discont inui t ies   are   involved.  Second 

w e  concluae that t h e  convergence of f i n i t e   d i f f e r e n c e   c m p u t a t i o n s  of 

transverse  displacement,   velocity,  and acce lera t ion   response   to  (2, 3) - 
exci ta t ions  i s  satisfactory,   marginal,  and unsa t i s fac tory ,   respec t ive ly .  

T h i s   d i f f i c u l t y  may be   subs t an t i a l ly  overcome,  however, by  e i ther   temporal  

or s p a t i a l  smoothing of the  exci ta t ion.   Third,  we conclude  that   the con- 

vergence d i f f i c u l t i e s  observed  derive  from two sources:   the  presence of 

d i scon t inu i t i e s   i n   ce r t a in   r e sponses ,  and t h e   f a i l u r e  of th in   (Bernoul l i -  

Euler )   she l l   theory   to   account   p roper ly   for   shor t   s t ruc tura l  wave length 

response components t ha t   con t r ibu te   s ign i f i can t ly   t o   t he   t o t a l   r e sponse .  

* 

2.3 STRESS/STRAIN RESPONSE TO IN-PLANE EXCITATION 

We examine here   the convergence of f ini te   difference  computat ions of 

s t ress /s t ra in   response  to   predominant ly   in-plane  exci ta t ion of cy l ind r i ca l  

and con ica l   she l l s .  

2 .3 .1  (2, r) -, (z, 3) -, and (G, 3) - Excitat ions 

We f i r s t  consider  the (&  r) - exc i t a t ion  problem of Example 2,whose 

kinematic  shell   responses were s tud ied   in   Sec t ion  2 .l. We sk ip  Example 1 

of that   sect ion  because,  for the   vir tual ly   non-dispers ive  propagat ion  that  

it d isp lays ,   the   essent ia l ly  membrane stress and strain  responses  are  almost 

d i rec t ly   p ropor t iona l   to   the   longi tudina l   ve loc i ty   response  of t h e  shell, 

which  has already  been  studied.  Since Example 2 involves  dispersive  prupa- 

gation, however, it i s  of i n t e r e s t   t o  examine longi tudina l  membrane stress 

response for t h i s   ca se .   F ig .  46 shows membrane s t r e s s   r e sponses   a t  a/L = 0.24, 
c t /a  = 5.73 and c t /a  = 17.2 , respectively;  convergence i s  seen t o   b e   s a t i s -  

f ac to ry   fo r  &Ao << 1 , where i s  t h e   s t r e s s   c h a r a c t e r i s t i c  wave length 

for   dispers ion-free  propagat ion.  
ho 

* 
Although we have not  observed in   th i s   Sec t ion   any   gradual   de te r iora t ion   in  
accuracy  with  increasing  t ime,  the emergence of t h i s  problem i n   c e r t a i n  com- 
putat ions of the  previous  Sect ion  suggest   that  it may occur i n  computations 
fo r   t r ansve r se   exc i t a t ions  also. Fortunately,  the  problem i s  readi ly   de tec ted  
by means  of multiple  computations  with  vari.ous mesh dimensions. 
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The next example i s  t h e  (z, r) - exc i t a t ion  problem of Example 3. 
Membrane stress responses a t  cr/a = 1 and c t /a  = 2 for t h i s  example 

a r e  shown i n   F i g .  47. Because of the  absence of discontinuities,   conver- 

gence of t h e   f i n i t e   d i f f e r e n c e   c m p u t a t i o n s  i s  e n t i r e l y   s a t i s f a c t o r y .  

For  the  reason  given above i n  connection  with Example 1, w e  sk ip  

Example 4 and  proceed t o   t h e  (z, 3) - exc i t a t ion  problem of Example 5. 
I n   F i g .  48, which shows longi tudina l   s t ra in   responses   a t  a/L = 0.62, 

c t /a  = 1.91, and c t /a  = 5.73, w e  f i nd   aga in   t ha t  convergence of t h e   f i n i t e  

difference  computations i s  s a t i s f a c t o r y   f o r  A ~ / A ~  < .  1. 

Since   the  (z, 3) - exc i t a t ion  of Example 6 ( the saw tooth  impulse ) 
produces  no  discoutinuities  in  stress/strain  response,   convergence of the 

corresponding  f inite  difference  computations i s  sa t i s f ac to ry ,   a s  it was 

f o r   t h e  (G? r) - exc i t a t ion  of Example 3 (see  Fig.  47). Thus, we omit 

detailed  examination of the s t ress / s t ra in   responses   for  t h i s  loading  and 

proceed t o   t h e  (2, 3) - exc i t a t ion  of Example 7. Because t h i s   e x c i t a t i o n  

does  produce d i scon t inu i t i e s   i n   l ong i tud ina l  menibrane s t r e s s / s t r a i n   r e -  

sponse,  convergence of the  f ini te   difference  computat ions of such  response 

is ,  a s   i n d i c a t e d   i n   F i g .  49, only  marginal. The  same i s  t r u e   f o r   t h e  

corresponding  non-axisymmetric  case of Example 8, a s   i nd ica t ed   i n   F ig .  50. 

2.3.2  Conclusions 

From Figs .  46-50, we draw two conclusions.   Firs t ,  w e  conclude t h a t  

f ini te   difference  computat ions of s t ress /s t ra in   response  to   predominant ly  

in-plane  exci ta t ion  converge  sat isfactor i ly   for   cases   involving (G,  F) -, 
(z, 3) -, and therefore  (z- r) - exc i t a t ions ,   a s   l ong   a s   t he   r a t io   a t   each  

s p a t i a l  mesh dimension to   the   shor tes t   cor responding   charac te r i s t ic   spa t ia l  

wave length uf the  response i s  much l e s s   t han   un i ty .  Second, we conclude 

that the  convergence of these same cmputat ions  appropriate   to   in-plane 

(z? t)- exc i t a t ions  i s  only  marginal  as a r e s u l t  of t he  d i scon t inu i t i e s  

present .  

+ 

2.3.3 Comparison with  Experimental  Data 

We now d i r e c t  our a t t e n t i o n   t o   t h e  comparison of f i n i t e   d i f f e r e n c e  

computations of s t ra in   response with corresponding  experimental  data. The 
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f i r s t  set  of data,  which  derive from the   exc i t a t ion  of very  loxg  cyl indrical  

s h e l l s   a t  one end by  the  imposi t ion of axisymmetric, 20 psec  long,  box- 

shaped longi tudina l   ve loc i t ies ,  i s  described  as Example 16 i n  Table 2 .  

S t r a i n   h i s t o r i e s   f o r  Specimen T-1 a r e  shown i n   F i g .  5 1  a t  = 3 inches 

and 7.5 inches.  We observe  that,  while  the  computations of peak  s t ra in  

and wave ar r iva l   t ime  a re   accura te ,   the   l a te   t ime  behavior  of the  experi-  

mentally measured long i tud ina l   s t r a in   h i s to r i e s  i s  not   accurately  predicted 

by  the computed h i s to r i e s .   S imi l a r   h i s to r i e s   fo r  Specimens T-13 and T-14 

a r e  shown i n   F i g s .  52 and 53; we observe  that  the  computations of peak 

s t r a in   a r e   a l so   accu ra t e  for t h e s e   s h e l l s ,   b u t   t h a t  computed a r r iva l   t imes  

and pulse  shapes  are  not  completely  satisfactory.   Disagreemnt between 

computed  and  measured pulse  shapes  should  not  be  given t o o  much weight, 

however, because  the  veloci ty   exci ta t ions  a t   the   ends of t h e   s h e l l s  were 

never  actually measured; the  box-veloci ty   exci ta t ion i s  only an  assume? 

input  based on l e s s   r e f ined  measurements. 

Experiments i n  which the   exc i ta t ions  were qu i t e   ca re fu l ly  measured 

a re   repor ted   in   Ref .  17. These  experiments,  which  are  described a s  Example 17 
i n  Table 2, involve  the  axisymmetric  longitudinal  excitation of a hollow cone 

t h a t  i s  s t ruck   a t   t he   c losed  end  by s t e e l   b a l l s  of various  diameters. The 

exc i ta t ions   a re   g iven   as   longi tudina l   s t ra in   h i s tor ies  measured by a quartz 

c rys t a l   l oca t ed   a t   t he  impacted end of the  cone.  These  inputs  can be ac- 

curately  descr ibed  as  

rwise , othei 

S i n c e   t h i s  i s  hardly a complete spec i f ica t ion  of boundary  conditions a t  

the  impacted  end of the  cone, some ana lys is  i s  necessary.  

The mer id iona l   s t ress   resu l tan t   for  an axisymmetrically  excited 

con ica l   she l l  can  be  written i n   t h e  form 
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A t  the  impacted end of the   "she l l "  of Fig.  54, it seems reasonable t o   t a k e  

aw/& = 0 , so t h a t ,   a t   t h a t   p o i n t ,  - a 
= au/aa + t an  cp aw/aa = au/aa. It a l s o  seems reasonable t o   t a k e  u 

'I - (Ulongi tudinal  ) 
r a d i a l  

= -u s i n  Cp + w cos C+Y equal t o   z e r o   a t   t h e  impacted  end,  which makes the  

term containing  Poisson 's   ra t io   vanish.   Unfortunately,   the  STAR code cannot 

handle mixed end condi t ions   l ike  u s i n  cp - w cos 'p = 0, s o  t h a t  we n m   i n -  

troduce  an  approximation.  Since,   for  this  "shell",  cp = 0.175 = << n/2 , 
we write from Eq .  2 

which i s  the  equivalent   cyl indrical   shel l   aproximation.  To make the  

Poisson ' s   ra t io   t e rm  vanish ,   then ,  we take w = 0 .  O u r  boundary  con- 

d i t i o n s   a t   t h e  impacted  end of the  hollow cone are   therefore   taken  as  

Figure 54 shows STAR code computations of meridional membrane s t r a i n  

responses  along  with  the  experimental   results.  The very   sa t i s fac tory   per -  

formance of the   th in   she l l   equa t ions  used i n   t h e  STAR code i s  su rp r i s ing  

u n t i l  we note  that ,   except for the   exc i ta t ion  of F ig .  54d, t he   s t ruc tu ra l  

wave lengths   character iz ing  the  pr imari ly   longi tudinal   shel l   response 

considerably  exceed  the 1/4 inch  "shel l"   thickness .  However, even i n   t h e  

case of F ig .  54d, f o r  which  the  spat ia l   width of the  pulse i s  only  about 

four  t imes  the mesh spacing,  agreement  between  the computed and  experimental 

r e s u l t s  i s  sa t i s fac tory .   F lgure  54e shows extended  results which include 

bending e f f e c t s   a s   w e l l   a s  wave r e f l e c t i o n   e f f e c t s  from  the  other end of 

the  hollow  cone. From t h i s   f i g u r e ,  we conclude f i r s t  (Gage 2 r e s u l t s  ) 
t h a t   t h e  STAR code accura te ly   accounts   for   bending   e f fec ts   in   the  hollow 

cone,  and  second (Gage 3 r e s u l t s )   t h a t   t h e   f r e e  edge  boundary  condition 
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assurned a t  t he  f a r  end of t he  cone i s  not  a very  successful   s imulat ion of 
the  experimental  boundary  conditions,  which were "not de f in i t i ve ly   e s t ab l i shed"  

by  the  experimental is ts .  

2.4 STRESS/STRAIN RESPONSE TO TRANSVERSE EXCITATION 

We  now investigate  the  convergence of f ini te   difference  computat ions 

of s t r e s s l s t r a in   r e sponse   i n   cy l ind r i ca l   she l l s   t o   p redominan t ly   t r ansve r se  

exc i t a t ions .  

2.4.1 (%, r] -, (z, 3) -, and (G, 3) - Exci ta t ions  

O u r  f i r s t  example i s  Example 9, whose kinematic  responses t o  a t ransverse 

(z, r) - exc i t a t ion  were the  f i r s t  s tudied  in   Sect ion  2 .2 .   Figure 55 shows 

l o n g i t u d i n a l   s t r a i n   h i s t o r i e s   a t  a/L = 0 and F .  We f i n d   t h a t  convergence 

of the  membrane s t r a i n  computations i s  uniformly  satisfactory.  Although we 

must use   the   ra ther   f ine  mesh  Aa/h = p t o   ob ta in   gene ra l ly   accep tab le  con- 1 

vergence of the  flexural  strain  computations,  and  although  the  computations 

appropriate t o   t h i s  mesh p r e d i c t   t h e   a r r i v a l  of a d i s turbance   tha t   t rave ls  

f a s t e r   t h a n  even  the  dilatational  velocity,   convergence of t h e   f i n i t e   d i f -  

ference  canputations of f l e x u r a l   s t r a i n  may s t i l l  be  termed sa t i s f ac to ry .  

This judgement i s  supported  by  Fig. 56, which shms long i tud ina l   s t r a in  

snapshots a t   c t / a  = 1.2 and 4.8.  

1* 

The next example i s  t h e  (G, 3 )  - exc i t a t ion  problem of Example 10. 
1 
2 '  Longi tudinal   s t ra in   responses   a t  a/L = - c t /a  = 1 .2  and ct /a  = 4.8 a re  

shown i n   F i g .  57. We conclude, on the  same bas i s   a s   t ha t   u sed   i n  con- 

nection w i t h  Figs .  55 and 56, t h a t  convergence  of the f i n i t e   d i f f e r e n c e  

membrane and f lexural   s t ra in   computat ions i s  sa t i s f ac to ry .  

We now proceed t o   t h e  ( G ,  T') - exc i t a t ion  problem of Example 11. 

Longitudinal  strain  responses of t h e   s h e l l   t o  t h i s  uniform  impulse  loading 

a re  shown i n   F i g .  58. Convergence of t h e   f i n i t e   d i f f e r e n c e  Computations f o r  

* 
I n   t h i s  and subsequent  examples,  circumferential  strain  response i s  s o  
smooth that convergence of the  f ini te   difference  computat ions of this 
quant i ty  i s  uniformly  satisfactory.  
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f l exura l   s t r a in   r e sponse  i s  seen t o  be uniformly  unsatisfactory.  The m e  

of Adh - r a t i o s  smaller than   un i ty   o f fe rs   no   so lu t im;   the   resu l t ing  re- 

sponse  computations are even more wi ld ly   o sc i l l a to ry  and p red ic t   t he  exist- 

ence of disturbances which  propagate a t  velocit ies  exceeding  even  the  dila- 

ta t iona l   ve loc i ty .   S ince  impr wed  theory  predicts   the  propagat ion of no 

d i scon t inu i t i e s   i n   l ong i tud ina l   s t r a in   r e sponse   fo r  ( z ,  5 )  - exci ta t ions ,  

t h i s  convergence  problem  can  only  be  associated  with  the  short wave length  

l imi t a t ions  of elementary  bending  theory. 

It i s  i n t e r e s t i n g   t o   n o t e   i n   F i g .  58 t ha t   ( e spec ia l ly   t he  results 

f o r   c t / a  = 1 .2 )   t he   t h in   she l l   f i n i t e   d i f f e rence   computa t ions  seem reason- 

ably  accurate  in  regions  well   behind  the  shear wave f ront   ( see   the   d i scuss ion  

of Example 9 in   Sect ion  2 .2) .   This  i s  i n  agreement  with  the  results of other 

invest igators   (see,  e .g., R e f .  18). A s  we would expect  from  Section  2.2, 

the  convergence  behavior of the  f ini te   difference  computat ions i s  unchanged 

by a var ia t ion  of boundary  conditions.  For  example,  changing  the clamped 

boundary  conditions of Example 11 t o   f r e e   s u p p o r t  boundary  conditions 

(Example 1 2 )  produces  no improvement in   t he   unsa t i s f ac to ry  convergence of 

the   f in i te   d i f fe rence   f lexura l   s t ra in   computa t ions .  

We conclude t h i s  subsection  with a brief  examination of nonaxisym- 

met r ic   longi tudina l   s t ra in   response   appropr ia te   to   the  ( z ,  6) - exc i t a t ion  

problem of Example 13. F ig .  59 shows l o n g i t u d i n a l   s t r a i n   h i s t o r i e s   a t  

e/L = 0.50 for the  associated  axisymmetric  problem  appropriate t o  a uniform 

impulse and for the  cosine  impulse  problem a t  p = 0 and p = 90". We ob- 

serve  the  unsatisfactory  convergence of the  f lexural   s t ra in   computat ions 

in   a l l   c a ses ,   no t ing   e spec ia l ly   t he   d rama t i ca l ly   p rema tu re   a r r iva l  of a 

computed f l e x u r a l  wave for Adh = 0.60. Thus, we aga in   f ind  that f i n i t e  

difference  response  computations  for  gently  non-axisymnetric  problems 

display  the same convergence  behavior a s  t h a t   a p p r o p r i a t e   t o   t h e   c o r r e s -  

ponding  axisymmetric  problems. 

2.4.2 Smoothed Exci ta t ions  

I n  view  of the  unsatisfactory  convergence  behavior  just  observed, 

l e t  us  now apply  the  temporal   and  spat ia l   exci ta t ion smoothing tecMiques 

discussed  previously  in   Sect ion  2 .2 .  We f i r s t   cons ide r   t he   ca se  of 
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Example 14, i . e . ,   t he   app l i ca t ion  of a uniform  tr iangular  pressure  pulse.  

L o n g i t u d i n a l   s t r a i n   h i s t o r i e s   f o r  a l m d   d u r a t i o n   c t / a  = 0.82 and longi-  

t ud ina l   s t r a in   snapsho t s   fo r  a l m d   d u r a t i o n  of c t /a  = 0.40, along  with 

corresponding results f o r   t h e  impulse  loading,  are shown i n   F i g .   6 0 .  We 

see that convergence of the  f ini te   difference  computat ions i s  subs t an t i a l ly  

achieved  for  the  ct/a = 0.82 tr iangular   pressure  loading,  and that the 

c t /a  = 0.40 f i n i t e   d i f f e r e n c e  cornputations l i e   c l o s e r   t h a n   t h o s e   f o r   t h e  

impulse  loading t c   t h e  impulse  loading  response computed wi th  improved s h e l l  

theory.   Similar  improvement i n  convergence i s  e f f ec t ed   w i th   spa t i a l  smooth- 

ing,  as shown i n   F i g .  61. T h i s  f igure,   which  pertains t o  truncated  longi- 

tudinal   Fourier   ser ies   expansions of a uniform  impulsive  loading (Example l 5 ) ,  
shows l o n g i t u d i n a l   s t r a i n   h i s t o r i e s   a t  a/L = F .  We see   t ha t  convergence 

i s  s a t i s f a c t o r y   f o r  m = 5 and 11, but  i s  only  marginal for m 

1 

max 
= 23. 

m8X 

2.4.3  Conclusions 

From Figs .  55-61, we draw the  fol lowing  conclusions  regarding  f ini te  

difference  computation of s t r e s s / s t r a in   r e sponse   t o   t r ansve r se   exc i t a t ion .  

F i r s t ,  we conclude t h a t  computations  appropriate t o  (z, r) -, (z, 2 )  -, 
and 'therefore (z, r) - exci ta t ions  are   sat isfactor i ly   convergent   providing 

that t h e   r a t i o  of each   spa t i a l  mesh dimension to   the   shor tes t   cor responding  

c h a r a c t e r i s t i c   s p a t i a l  wave length of the  response i s  appreciably  less   than 

uni ty .  Second, we conclude  the  computations  appropriate t o  (& 2 )  - exc i t a -  

t ions   a re   unsa t i s fac tory ,  a d i f f i c u l t y  which may b e   p a r t i a l l y  overcome, 

however, by  e i ther   temporal  or s p a t i a l  smoothing of the   exc i ta t ion .   Thi rd ,  

we conclude tha t   the   unsa t i s fac tory  convergence  encountered i s  caused  by 

t h e   f a i l u r e  of t h i n   s h e l l   t h e o r y   t o  account   p roper ly   for   shor t   s t ruc tura l  

wave length  response components that c o n t r i b u t e   s i g n i f i c a n t l y   t o   t o t a l   r e s p o n s e .  

The conclusions of Subsections  2.1.4,  2.2.5,  2.3.2  and  2.4.3  are sum- 

marized  and  generalized i n  Table 1. It i s  important t o  r ecogn ize   t ha t   t h i s  

t ab l e  does  not  indicate a t  what mesh dimensions  convergence w i l l  be  achieved, 

but   indicates   only  the convergence  behavior t o  be  expected  as  the mesh d i -  

mensions are  reduced. 
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Table 1. Convergence Behavior of Finite  Difference Computations 
Based on Thin Shel l  Theory 

Type  of Exci ta t ion   (a l l  F) 
Response Quantity 

i". - ~ " 

il, w 

'Qe 
.. 

" .~ 

I "  

(z, r) ( G J  '),(;J') (;> '1 1 
~~ 

sat isfactory  sat isfactory  sat isfactory 

"" " 

sat isfactory marginal sat isfactory 
2 

I 

sat isfactory unsatisfactory marginal t o  'J* 2 

sat isfactory 

IN-PLANE  EXCITATIONS 

Type  of Exci ta t ion  (a l l  r )  
Response Quantity 

w 

.. 
W 

~ 

sat isfactory sat isfactory 
~- 

1 

sat isfactory  sat isfactory 1 

sat isfactory  sat isfactory 1 

sat isfactory  marginal   to  2 ~ 3  
unsatisfactory 

TRANSVERSE  EXCITATIONS 

G, 3) 
sat isfactory 1 

marginal t o  ''3 
unsatisfactory 

unsatisfactory 3 

unsatisfactory 2 

I Convergence occws  as Aa and aAfi become appreciably  smaller  than  the  shortest 
corresponding  characteristic  spatial wave length of the  response of in te res t  

'Less than  satisfactory convergence i s  due to   t he  presence of response discontinuities 
3Less than  satisfactory convergence i s  due to   the   shor t   f lexura l  wave length 
l imitations of thin  shel l   theory 
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Table 2 .  Numerical  Examples 
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Ex 

1 
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4 
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7 
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17 

Figures 
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11,12, 
48 
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49 
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50 

19-21, 
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22-25, 
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60 
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51 
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53 

54 
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7 
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Chapter 3 

ANALYTICAL STUDY OF CONVERGENCE 

The primary  objective of t h i s   chap te r  i s  to   s tudy   the   causes  of the con- 

vergence  problems  encountered i n  Chapter 2 .  Two causes  are  possible:  limi- 

ta t ions   i nhe ren t   i n   t he   f i n i t e   d i f f e rence   me thd ,  and l imi t a t ions  of the 

she l l   t heo ry  employed. 

It i s  c l e a r   t h a t   i n  problems characterized  by  the  presence of response 

discont inui t ies ,   there   a lways  exis ts  a region  near  each  discontinuity where 

non-convergent osc i l la t ions   in   the   f in i te   d i f fe rence   computa t ions   occur .  

Even though this   behavior   causes   only  marginal   d i f f icul t ies ,  it s t i l l  re- 

presents   an  inherent   l imitat ion of t he   f i n i t e   d i f f e rence  method. 

We observed i n  Chapter 2 Convergence  problems r e l a t e d   t o   f l e x u r a l   r e -  

sponse  computations  that  are  not  caused  by  the  presence of d i scon t inu i t i e s  

in  the  response of i n t e r e s t .  We w i l l  s e e   i n   t h i s   c h a p t e r   t h a t   t h i s   d i f f i c u l t y  

i s  no t   t he   r e su l t  of a l i m i t a t i o n   i n   t h e   f i n i t e   d i f f e r e n c e  method i t s e l f ,  

b u t  i s  ins tead   the   resu l t  of a l imi t a t ion  of the   th in   she l l   (Bernoul l i -Euler )  

theory  used. 

There i s  ample ev idence   in   the   resu l t s  of Chapter 2 t h a t   t h e  convergence 

d i f f i c u l t i e s  of f ini te   difference  computat ions  are   associated  with  response 

components wi th   shor t   s t ruc tura l  wave lengths .  For these components, s h e l l  

curvature  effects  are  unimportant and it i s  t h e r e f o r e   j u s t i f i a b l e   t o  con- 

sider  the  simpler  case of a p la te   ins tead  of a shell.  Furthermore,  since 

convergence d i f f icu l t ies   in   the   absence  of response  discont inui t ies  have not 

occurred  for   shel ls   subjected  to   in-plane  exci ta t ions,  we need  only  consider 

transverse  motions o f  t he   p l a t e .  

The p r inc ipa l   r e su l t s  of t h i s  Chapter  are (1) tha t   t he   f i n i t e   d i f f e rence  

method f a i l s   t o  converge  only in   r eg ions  around d iscont inui t ies   in   the   response  

of i n t e r e s t ,  ( 2 )  that   f lexural   response  convergence problems  not i n   r eg ions  

around  response  discont inui t ies   are   the  direct   resul t  of t h e   f a i l u r e  of t h i n  

shel l   (Bernoul l i -Euler)   theory,  and (3)  t h a t  a t h i n   s h e l l   f i n i t e   d i f f e r e n c e  

so lu t ion  may be more accurate  than  even  an  exact  solution of the  corresponding 

d i f fe ren t ia l   equa t ions .   In   addi t ion ,  it i s  pointed  out   that   the  method of 
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mcdal supe rpos i t i on   a l so  suffers from convergence  limitations, and t h a t   t h e  

use of improved s h e l l  (Timoshenko) theory   ins tead  of t h i n   s h e l l   t h e o r y  w i l l  

tend t o   r e l i e v e  sane of t he  convergence d i f f i c u l t i e s   a s s o c i a t e d   w i t h  com- 

putat ions of flexural response,  but may a l s o  prove t o  be  inadequate  for 

some purposes. 

3 .1  CONVERGENCE OF FINITE DIFFERENCE COMPUTATIONS OF FLEXURAL RESPONSE 

This   sect ion examines the dynamic c h a r a c t e r i s t i c s  of a f in i t e   d i f f e rence  

model of a t h i n   p l a t e .  These charac te r i s t ics   a re   then   re la ted   to   those  of 

the  continuous  plate  and  convergence of t h e   f i n i t e   d i f f e r e n c e  model i n   t h e  

l i m i t  of vanishing mesh s i z e  i s  demonstrated. 

3.1.1 Frequency  Equation for   the   F in i te   Di f fe rence   P la te  

A convenient way to   cha rac t e r i ze   t he  dynamic behavior of a system 

i s  t o  determine  the  frequency  equation  for  the  system. Such an  equation 

relates   the  (angular)   f requency U) t o   t h e  wave  number k. A s  shown i n   t h e  

subsequent  derivation  for a p l a t e  , and as R e f .  19 shows f o r  simple  discrete 

systems,  the  frequency  equation cv = w(k) f o r  homogeneous d i s c r e t e  systems 

i s  independent of t he  boundary  conditions and the  number  of degrees-&-freedom; 

d i f f e ren t  boundary  conditions or a d i f f e r e n t  number of degrees-of-freedom 

merely  give  different  points on the same U) = w(k) curve. It should a l s o  

be  noted  that   the  frequency  equation i s  the same f o r   t r a v e l i n g  waves, stand- 

ing waves due t o  free osc i l l a t ions ,  and forced   s inusoida l   osc i l la t ions  

(Ref. 19) ;  again  the  different   cases   s imply  give  different   points  on the same 

frequency  curve U) = ~ ) ( k  ) . 
The frequency  equation w i l l  now be  determined for   the   d i scre te   sys tem 

t h a t   r e s u l t s  from a f in i t e   d i f f e rence   r ep resen ta t ion  of t h e   f l e x u r a l  motion 

of a t h i n ,   f l a t   p l a t e .  A comparison i s  then made between the  frequency 

equat ion  for   the  cont inuous  plate  and that f o r   t h e   f i n i t e   d i f f e r e n c e   p l a t e  

i n   t h e  limit of vanishing mesh width.  
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The f r ee   t r ansve r se  motion of a t h i n   p l a t e  i s  governed b y   t h e   f o l l m i n g  * 
equation: 

where w(x,y,t)  i s  the  la te ra l  displacement, x and y are Cartesian 

coordinates,  c i s  the   p l a t e   ve loc i ty ,  y = h / f i  i s  the   r ad ius  of 

gyration  (h = pla te   th ickness)  and t i s  time.  This  equation w i l l  now 

be  converted t o  a par t ia l   d i f ference  equat ion  through  the  use of second 

o rde r   f i n i t e   d i f f e rence   expres s ions .  The p l a t e  domain i s  replaced  by a 

f i n i t e   d i f f e r e n c e  mesh w i t h  mesh widths p and i n   t h e  x- and  y- 

d i rec t ion ,   respec t ive ly .  The  mesh or noda l   po in t s   a r e   l oca t ed   a t   t he   i n -  

t e r sec t ions  of t he   l i nes  

X = &x, 2&, . . ., mhx, . . . 

y = u, 2 ~ ,  . . ., n u ,  . . . 
where m and n a re  mesh poin t   ind ices .  The f in i te   d i f fe rence   approxi -  

mation t o   t h e   d i f f e r e n t i a l   o p e r a t o r  v w i n  Eq. 1 i s  represented a t   t h e  

mesh point  m,n by the  module shown i n   F i g .  1. For  example, the  co- 

e f f i c i e n t  of w a t   p o i n t  m,n i s  6 [   AX)-^ + ( ~ ) - ~ l  + 8(  F ) - ~ (  D ) - ~ .  
I n   t h e   i n t e r e s t  of brev i ty ,  we do  not   expl ic i t ly   wri te  down the  complete 

d i f fe rence   equat ion   a t   the   po in t  m,n; it can readily  be  obtained from 

Eq.  1 and Fig .  1. 

4 

m, n 

For a wave-type so lu t ion  of the  difference  equation we take 

W = A exp [ j ( w t  - kxx - kyy)1 
m, n 

= A exp [ j ((ut - kxmD - kynN) l  

where kx and k a re   t he   t r ace  wave nunibers r e l a t i v e   t o   t h e  x- and 

y-axes,  respectively,  and u) i s  angular  frequency. We can write, therefore ,  
Y 

* 
This  expression  can be readi ly   obtained f rm t h e   l a s t  of Eqs. 1.7. 
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W = A exp{j[wt - kx(m+l) @ - k y n ~ ] ]  m+l , n 

= w exp[- jkxp]  
m, n 

e t c .  

Proceeding i n   t h i s  way, we can  express   the  la teral   d isplacement   a t   each 

nodal  point of the  computational module (Fig.  1) i n  terms of w . 
Thus the   d i f fe rence   equat ion   a t   the  mesh poin t  m,n reduces t o  an  a lge-  

braic   equat ion which i s  homogeneous i n  w . Since w represents   the 

displacement a t  a general  mesh poin t ,   the   coef f ic ien t  of w must vanish, 

so t h a t ,   a f t e r  some algebraic  manipulations, we obtain  the  condition  re- 

qu i red   for   the   p lane  wave given  by  Eq. 3 t o  be a so lu t ion  of t h e   f i n i t e  

difference  equation f o r  the  plate .   This   condi t ion i s  the  frequency 

equa t ion   fo r   t he   d i sc re t e  system, and i s  given  by 

m, n 

m, n m, n 

* m, n 

This  relation  has  been  obtained  without  consideration of boundary 

conditions and i s  therefore  independent of them. Also,  w ( k x , g J k y J D )  

i s  not a funct ion of the   ind ices  m and n;  hence the  frequency  curve 

i s  independent of the  number of degrees-of  -freedom. 

3.1.2 Cutoff  Frequency 

The frequency  dkx,  @,ky, m )  reaches a maximum f o r  

* 4 2 2 
Trigonometr ic   ident i t ies  f o r  s i n  5 and ( s i n   S ) ( s i n  c )  a r e  employed. 
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which  corresponds t o  wave lengths Ax = 2n/kx,Ay = 2n/ky given  by 

Since wave lengths  smaller  than  twice  the mesh spacing have  no  meaning 

( R e f .  20) ,  we conclude  that  "cutoff 'I i s  reached a t   t h e   f o l l o w i n g  wave 

numbers 

s o   t h a t ,  from  Eq. 5 ,  the  cutoff  frequency i s  given by  

The introduct ion of Eqs. 8 i n t o  Eqs. 4 yields   the  fol lowing mode shape 

appropriate   to   the  f requency wc: 

Thus, a t   the   cutoff   f requency  each mesh poin t  moves with  equal   absolute  

value and i n  a direct ion  opposi te  t o  t h a t  of i t s  immediate neighbors. 

This  "zig-zag" mode i s  dep ic t ed   fo r   t he   bas i c   f i n i t e   d i f f e rence  module 

i n   F i g .  2 .  

For  one-dimensional d i s c r e t e  problems,  such a s  a l i nea r   a r r ay  of 

o sc i l l a to r s ,  it has  been  shwn  (Ref. 20)  t h a t   t h e  wave  number k i s  r e a l  

i f   the   f requency  w i s  less  than  the  cutoff  frequency wc. However, f o r  

> w , no  t rave l l ing  wave e x i s t s  and a standing wave develops. T h i s  

standing wave i s  charac te r ized   by   ad jacent   po in ts   osc i l la t ing   in   oppos i te  

phase  with  amplitudes  decreasing  exponentially  in  space; k i s  therefore  
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complex. A t  01 = w an  ambigui ty   exis ts  and the  wave motion  can  be 

considered either t r a v e l i n g  or standing. Hence the  one-dimensional d i s -  

crete  system  behaves as a "low pass filter", i .e ., it allows propagation 

of response components with frequencies up t o  a cutoff  frequency 01 . 

c '  

C 

If we spec ia l ize  our p l a t e  problem t o   t h e  one-dimensional  discrete 

case,   i .e . ,  the f i n i t e   d i f f e r e n c e  beam, the  above  remarks  apply  and the 

f i n i t e   d i f f e r e n c e  beam cons t i t u t e s  a t r u e  low p a s s   f i l t e r .  The two-dimen- 

sional  case  (Eqs. 5 and 9 )  i s  more complicated,   for  it i s  conceivable  that ,  

a t   c e r t a i n   f r e q u e n c i e s ,  w e  may have a t r ave l ing  wave i n  one d i r ec t ion  and 

a s tanding wave i n  the o ther   d i rec t ion .  Th i s  p o s s i b i l i t y   h a s   y e t   t o   b e  

adequately  studied. However, it i s  c l e a r   t h a t   f o r  I,U > uc, exponent ia l ly  

decaying  standing waves w i l l  e x i s t   i n   b o t h   d i r e c t i o n s .  

Knowledge of the   cu tof f   f requency   for  a given mesh s i z e  i s  important, 

since  spurious  noise w i l l  exis t   in   the  response  computat ions i f  t he   d i sc re t e  

system i s  s ign i f i can t ly   exc i t ed   a t   f r equenc ie s  w > wc (Ref. 21) .  I n  

addi t ion,   there  i s  a d e t e r i o r a t i m  of accu racy   i n   t he  computed response 

appropriate  t o   t h e   r e g i o n  w + w - th i s  w i l l  b e   s t u d i e d   i n   d e t a i l   i n  

Section  3.2.  
C '  

3.1.3 C r i t i c a l  Time S tep  

The cutoff  frequency i s  a l so   impor tan t   in   the   de te rmina t ion  of the  

maximum time  step  allowed  in  conjunction wi th  a g iven   spa t i a l  mesh for 

numerically  stable  computation.  In  Ref. 11 it i s  shown t h a t ,   f o r  a d i s -  

c r e t e   l i n e a r  system,  the c r i t i c a l  time s t e p  A t  can  be  determined from 
c r  

where %x i s  the  highest   frequency of the system.  For wmx we use 

the  cutoff  frequency wc given  by E q .  9 t o  obtain  the  second of Eqs. 1.10. 

For the   special   case of a square msh, E q .  1.10 agrees wi th  the r e s u l t  

given in   Re f .  22, which i s  der ived  through  the  appl icat ion of the von Neumann 

s t a b i l i t y  method ( R e f .  23) .  

For completeness, w e  now present  an  expression for A t c r  appropriate  

t o  in-plane  motion of a p l a t e .  Guided by the resul ts   obtained above f o r  
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t ransverse  motion, we assume t h a t  the cutoff  frequency  corresponds t o  a 
zig-zag mode fo r   ad j acen t  mesh points   (Fig.   2) .  Then, from the  governing 

difference  equations for in-plane  motion,  or  through  the  application of 

Rayleigh's  principle,  w e  can  readi ly  show t h a t  

where c = [E/2(l+v)p]1/2 i s  the   shea r   ve loc i ty .   In t roduc ing   t h i s   i n to  

Eq. 11, w e  obtain  the f i r s t  of Eqs. 1.10; t h i s   r e s u l t   a g r e e s   w i t h  the 

r e s u l t  of R e f .  24,  which a l s o  employs the  von Neumann s t a b i l i t y   c r i t e r i o n .  

N a r  it has been  stated  (Ref.  25) that E q .  11 i s  inconvenient   in   appl ica-  

t ion  because of t h e   d i f f i c u l t y  of determining wmax; we have ju s t   s een   t ha t  

the assumption of zig-zag  motion  constitutes a very  simple means for   over -  

coming t h i s   d i f f i c u l t y .  

S 

3.1.4 Convergence of the   F in i te   Di f fe rence  Method 
. ~~ . . " 

Eq. 5 i s  the  f requency  equat ion  for   the  f ini te   difference  plate .  

We now consider   the  l imit ing  case when the  mesh widths p$ and w 
both  approach  zero. Thus we have, f o r   f i x e d   s t r u c t u r a l  wave numbers 

and k 
kX 

Y) 

so  that the   Taylor ' s   se r ies   expans ion   for   s in  f then  yields  

This i s  i n  agreement with  the  frequency  equation  for  the  uniform  plate,  

which may be obtained from R e f .  26.  Thus, a f i n i t e   d i f f e r e n c e   s o l u t i o n  
does, i n   f a c t ,  converge t o  the corresponding  continuous  solution  as 

w ,  &f 0 , i n   t h e  absence of response  discont inui t ies .  
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3.2 FFEQUENCY PARAMETERS 

I n  this sect ion,  w e  g ive   express ions   for   the   charac te r i s t ic   f requency  

pa rame te r s   t ha t   pe r t a in   t o   t he   she l l   t heo ry  employed, the  given  exci ta t ion? 

and t h e   f i n i t e   d i f f e r e n c e  mesh. These  parameters  are  then  used t o   i n t e r -  

p r e t  some of the  numerical results presented   in   Sec t ion  2 .  A f i n i t e   d i f f e r -  

ence  computational  procedure  based on the  use of these  parameters i s  then 

presented. 

3 .2 .1  L i m i t  Frequencies of S h e l l  Theory 

Thin she l l   t heo ry  i s  l imi ted   to   the   f requency   range   (Ref .  7 )  

f o r   f l e x u r a l  motion,  and 

w 2 w =ws e 

for   extensional   motion.   In   these  equat ions,  i s  the  frequency of 

the  lowest  antisymmetric  thickness-shear mode  of a plate ,   g iven  by 
wS 

For  comparison, we a l s o   w r i t e   t h e  limit frequency   appropr ia te   to  

improved theory  (Ref. 7 )  

We observe t h a t  we= wi = 10 Wf . 

3.2.2  Cutoff  Frequency of Exci ta t ion  

A convenient way t o  describe a t r ans i en t   exc i t a t ion  i s  t o  char- 

a c t e r i z e  it i n  terms of i t s  frequency  content,  through  the  use of the  

Fourier  transform  (Ref. 2 ) . For example l e t  us  consider a funct ion 
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with   the  f olluwing  tr iangular  temporal  variation  (Fig.  3 )  

, 0 r ; t s - t  1 
2 w  I Lw 

, "t s t s t w  1 
2 w  

\ O  
, otherwise 

The Fourier  transform of f (t ) is  then (Eq. 1 . 2 )  

Figure 3 shows the  spectrum - ~?(IJ)I from  Eq. 20. This  spectrum i s  

c l e a r l y  a compact funct ion  with a reasonably  wel l   def ined  exci ta t ion 

cutoff  frequency  given  by 

2 

tW 

4rr wx M - 
tW 

Not a l l   e x c i t a t i o n s   a r e   b l e s s e d   w i t h  a wel l   def ined  exci ta t ion 

cutoff  frequency. It i s  of ten  desirable  t o   f i l t e r  such exc i t a t ions  

in   o rder   to   enforce   cu tof f .   This  w i l l  be  discussed  shortly  in  Sub-section 

3.2.5.  

3.2.3- L i m i t  Frequency of  Mesh 

We have  observed in   the   p rev ious   sec t ion   tha t  harmonic waves wi th  

frequencies  greater  than  the  cutoff  frequency w i l l  not   propagate   in   the 

f in i t e   d i f f e rence   ana log  of a continuous  system.  Furthermore,  there i s  

no  guarantee  that   the  discrete  system w i l l  accurately  represent  all waves 

propagating in  the  continuous  system  with w < wC. The degree of inaccuracy 

i s ,  in   fac t ,   ind ica ted   by   the   d ivergence  between the  frequency  equations 
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f o r   t h e  two  systems.  Let us nm  def ine  a l imit   f requency of the  mesh 

( W  ) below  which the  f requency  curve  for   the  discrete   system  diverges  

by less than a prescr ibed amount from the  f requency  curve  for   the con- 

tinuous  system.  That is, l e t  % be the  highest   value of u) f o r  which 

the   fo l lowing   re la t ionship   ho lds  : 

m 

where the  numerator of t he   f r ac t ion  i s  given  by  Eq. 5, the  demoninator 

i s  the  f requency  equat ion  for   the  cont inuous  plate ,  and E <.= 1. Now we 

might  use  any one  of three  frequency  equations  for  the  continuous  plate:  

tha t   appropr ia te   to   e lementary   (Bernoul l i -Euler  ) theory,   that   appropriate  

t o  improved  (Timoshenko) theory and, f i n a l l y ,   t h a t   a p p r o p r i a t e   t o   e l a s -  

t i c i t y   t h e o r y .  If we take  the  shear  constant of impraved t h e o r y   e q u a l   t o  

m /12 , t h e   l a t t e r  two  frequency  equations  are  nearly  identical .  Thus 

we consider  only  the  elementary  f lexural  equation (Eq. 1 4 )  and an  equation 

t h a t   c o n s t i t u t e s  a very  accurate  approximation t o   t h e  one f o r  improved 

theory  (Ref.  27) 

2 

where g = - 2 ( 1 - u )  
1 

and r = (h  /n g)(kx 
2 2  

2 + k 2 )  . 
Y 

We f i rs t  cons ider   f lexura l  waves propagating  along  the  x-axis,  so  

t h a t  k = 0. From Eqs . 5 and 23, then, we have 
Y 
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f o r  w(k,fl,O,m) 5 wC. Eqs .  23 and 24 a r e   p l o t t e d   i n   F i g .  4 f o r  = 0.3 
and m/h = z, 1 and 2. We observe  that   the   f l /h  = 1 curve  deviates 

less than  about 15% from the  imprm.ed theory  curve for kh 5 , 
whereas  - the  elementary  f lexural  theory  curve  differs from the improved 

theory  curve  by more than lo$ i n   t h i s   r a n g e .  If we accept = 0.15, 
then, w e  can state t h a t   f o r   t r a n s v e r s e  motions t h e   f i n i t e   d i f f e r e n c e  

equations  appropriate t o   t h i n   s h e l l   t h e o r y   p o s s e s s  a s ign i f i can t ly   h ighe r  

limit f requency   ( fo r   g /h  = 1) than  the  corresponding  different ia l   equat ions 

This   impl ies   tha t  a t h in   she l l   f i n i t e   d i f f e rence   so lu t ion   (w i th  &/h = 1) 

may i n  some cases  be more accurate  than  even  an  exact  solution of the   cor -  

responding  different ia l   equat ions.  These r e s u l t s  , of course,  apply  equally 

t o  waves propagating  along  the  y-axis.  

1 

Let  us now cons ide r   f l exura l  waves propagating i n  a d i r ec t ion   no t   pa ra l l e l  

t o  either the  x-  or  y-axes.  Since, from Eqs. 5 and  23, the  discussion of the 

previous  paragraph  applies when e i t h e r  kx >> k or k >> kx , we tu rn  our 
a t t e n t i o n   t o   t h e   c a s e  - k = $ k2.  Eqs. 5 and  23 then   y ie ld  

2 2 
Y Y 

kx - Y 

T h i s  equation and  Eqs. 23 a re   p lo t t ed   i n   F ig .  5 f o r  u = 0.3 and various 

values of w/h and D/h .  Note that,  because of symmetry i n   t h e  equa- 

t i o n s ,   r e s u l t s   f o r  p = @y = a r e   i d e n t i c a l   t o   t h o s e   f o r  

p = 4, = A ~ .  We see  f rom  the  f igure  that   the   curve  for  = a h ,  

&r =& h l ies   considerably  c loser   than  the  curve  for  ax = h, @y = h 

t o   t h e  improved theory  curve  for   f requencies  below c/h. The curve   for  

& = h, = 2h (or v i c e - v e r s a )   l i e s   c l o s e r  s t i l l ,  but  i s  less des i rab le  

for   the  fol lowing  reason.   Figure 5 p e r t a i n s   t o  a wave propagating a t   a n  

angle of 45 degrees wi th  r e s p e c t   t o   e i t h e r   a x i s .   I n   o r d e r   t o   o b t a i n  com- 

parable   resolut ion  a long  each  axis   ( i .e .  t o  have the  same  number of nodal 

points   per   t race wave length) ,  we would wish t o   s e t  g = &r. 
In   general ,   the   requirement   for  comparable reso lu t ion  i s  

k g = k & f  
X Y 
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Thus, if w e  a n t i c i p a t e   t h a t   t h e   s o l u t i o n   t o  a problem of i n t e r e s t  w i l l  be 

cha rac t e r i zed   by   sho r t e r   s t ruc tu ra l  wave l e n g t h s   i n  one d i r e c t i o n   t h a n   i n  

another, E q .  26  immediately  yields  the  desired  aspect  ratio  AX f o r  

t h e   f i n i t e   d i f f e r e n c e  mesh. To determine  the mesh width magnitude , w e  note 

tha t   the   f in i te   d i f fe rence   f requency   curves  of Figures 4 and 5 cons t i tu te  

a near ly  optimum f i t  below w = c/h t o   t h e  improved theory  frequency 

curve i f  

Combining Eqs.  26  and 27, we f i n d   t h a t ,   f o r  a specif ied  value of ky/kx, 

the optimum mesh widths  are  given  by 

1/2 , 

optimum 

Often it i s  a l l   b u t   i m p o s s i b l e   t o   a n t i c i p a t e  a va lue   for  

It i s  then   adv i sab le   t o  use a square mesh. In   t h i s   ca se ,   F igs .  4 and 5 
suggest  the  use of the compromise mesh widths 

= (F) 1 .2  (29 1 
compromise c ompr omi se 

Eqs.  28 and 29, in   conjunct ion   wi th   F igs .  4 and 5 ,  y ie ld  a limit frequency 

for an optimum or compromise f i n i t e   d i f f e r e n c e  mesh  of % M ws/2. However, 

because  the  ra ther   large  negat ive  curvature  of the  corresponding  frequency 

curves in   t h i s   r eg ion   l eads   t o   undes i r ab le   i naccurac i e s   i n   t he  group ve loc i ty  

c = dw/dk , we reduce  the limit frequency t o  
g 
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This i s  considerably above the  limit frequency for continuum t h i n   s h e l l  

theory  given  by E q .  15, b u t  i s  s t i l l  we l l  below the  improved theo ry   l imi t  

frequency  given  by Eq. 18. 

Fina l ly ,  it i s  i n t e r e s t i n g   t o  examine the   reso lu t ion   charac te r i s t ics  

of f in i te   d i f fe rence   response   computa t ions   appropr ia te   to   the  limit f r e -  

quency of Eq.  30. If, f o r  example, we s e t  Aa/h = 1 and then  take 

A t  = A t  (see the f i r s t  of Eqs  . l J O )  f o r  a one-dimensional t r a n s i e n t  re- 

sponse  problem, we f i n d  from  Eqs .1.10, 17 and  30 t h a t  &/Tm cS/6c 1/10, 

where Tm = 2n/wm. Thus we have t e n  computation  points  per  period  corres- 

ponding to   t he   l imi t   f r equency ,  which i s  sa t i s f ac to ry .   In   con t r ac t ,  w e  

f i n d  from Fig .  4 t ha t   t he  limit wave  number k (the  value of k determined 

by  the  Adh = 1 frequency  curve f o r  IJJ = wm) i s  such  that  Aa/h 1/4,  
where Am = 2n/km. Thus w e  have only  four  computation  points  per  spatial 

wave length  corresponding t o   t h e  limit frequency. We conclude,  therefore, 

t ha t   r e so lu t ion  i s  almost  always be t t e r   i n   f i n i t e   d i f f e rence   r e sponse   h i s -  

tories  than  in  the  corresponding  snapshots,  a conclusion  which i s  supported 

by numerous response  computations in   the   p rev ious   chapter .   This   f lexura l  

resul t   contrasts   with  the  corresponding  extensional   resul t ,  which,  because 
w(k)  = ck f o r  such  motion, s ta tes   that   temporal   resolut ion is  i d e n t i c a l   t o  

spa t i a l   r e so lu t ion .  

c r  

m 

m 

3.2.4 In t e rp re t a t ion  . ~ ~~~ of Previous  Numerical  Results 

Let  us now  make use of t he   r e su l t s  of t h i s   s e c t i o n   t o   i n t e r p r e t  some 

of the  numerical  reslilts of Chapter 2 .  We f i r s t   c o n s i d e r  Example 14 (Sub- 

sect ions 2.2.4 and 2.4.2) ,  which  involves  the  temporal  smoothing of a uni- 

form radial   impulsive  loading on a f r ee ly - suppor t ed   cy l ind r i ca l   she l l .  

From Eq.  30, Eq. 17 and Table  2.2, we f ind   t ha t   t he  limit frequency f o r  

Aa/h = 1 computations i s  

From Subsection  3.2.2,   the  excitation  cutoff  frequency  for  the 

c t  /a = 0.82 t r iangular   pressure  loading i s  
W 

Thus, we are   no t   surpr i sed   to   see   the   margina l  convergence  behavior of the 

acceleration  computations of Fig.   2.39. The s a t i s f a c t o r y  convergence 

I 



behavior of the  corresponding  displacement,   velocity  and  longitudinal s t ra in  

computations  (Figs.  2.39  and  2.603) is apparent ly  due t o   t h e   f a c t   t h a t   r e -  

sponse components with  f requencies   abwe &/c= 0.64 do  not  contribute 

s ign i f i can t ly   t o   t hese   r e sponses .  Comparison of Figs.   2.39 and 2 . 6 b  with  

F ig .   2 .30   demonst ra tes   tha t   f i l t e r ing   the   rad ia l   impulse   loading  of Example 

1 2   a t  uxh/c =0.77 improves the convergence of velocity  computations  from 

marginal t c  sa t i s f ac to ry ,   t he  convergence of l o n g i t u d i n a l   s t r a i n  computa- 

t ions   f rom  unsa t i s fac tory   to   sa t i s fac tory ,  and the  convergence of accelera-  

tion  computations  from  unsatisfactory t o  marginal. 

As we would expec t ,   f i l t e r ing  the impulsive  loading a t  a lower f r e -  

quency  improves  convergence  even more. The exc i ta t ion   cu tof f   f requency   for  

t h e   c t   / a  = 1.64 tr iangular   pressure  loading of Example 1 4  i s  
W 

which i s  well below the  l i m i t  frequency w h/c = 0.64.  Thus, we would ex- 

pec t   t o   s ee   t he   un i fo rmly   s a t i s f ac to ry  convergence  exhibited  by  the 

Aa/h = and 1 response  computations of Fig .   2 .40 .   F i l te r ing   the   ex-  

c i t a t i o n   a t  a frequency  significantly  higher  than %h/c = 0.64 y ie lds ,  

of cour se ,   l e s s   s a t i s f ac to ry  convergence  behavior.  This i s  demonstrated 

in   F igs .   2 .41  and 2.6m, which shaw re su l t s   fo r   e tw /"  = 0.40, correspond- 

i n g   t o  

m 

1 

L e t  us now consider Example 1 5  (Subsections  2.2.4 and 2.4.2),  which 

involves   spa t ia l  smoothing of a uniform  radial  impulsive  loaaing on a 

f r ee ly - suppor t ed   cy l ind r i ca l   she l l .  The limit frequency i s  %h/c = 0.64 

f o r   t h i s  example a l so ;  t h i s  corresponds,  from  Fig. 4, t o  a limit wave 

number 

kmh M 1.64 

Because F ig .  4 p e r t a i n s   t o  harmonic waves i n   a n   i n f i n i t e   p l a t e ,   t h e  

s p a t i a l  domain over  which  the  truncated  Fourier  series  impulse  loading of 



Example 1 5  i s  defined must be   cons ide red   i n f in i t e   i n   ex t en t .  Hence w e  take 

the   spa t ia l   Four ie r   t ransform of the  loading t o   f i n d   a n   e x c i t a t i o n   c u t o f f  

wave nuniber kx w (mmx + 2 ) n / ~ .  For m = 5 
max 

kxh M 0.46 

which i s  much smaller than  kih.  Thus w e  would expect t o  see the  uniformly 

s a t i s f a c t o r y  convergence  exhibited i n   F i g s .  2.43 and 2.61a.  For m = 11 , max 

kxh M 0.85 

which i s  approximate ly   equal   to   the   apparent   l imi t  wave  number f o r  Aa/h = 2 

computations  (Fig. 4 ) .  We would the re fo re   expec t   t o   s ee   s a t i s f ac to ry  con- 

vergence  behavior f o r   a l l   t h e   A d h  = 2 and Aa/h = 1 computations of 

Figs.   2.44 and  2.61b. The f a c t   t h a t   t h i s  i s  not  quite  the  case means t h a t  

t he   t rue  l i m i t  wave  number f o r  Aa/h = 2 computations i s  somewhat less than 

0.85. We do  f ind  uniformly  satisfactory  agreement between the Aa/h = 1 

and Aa/h = - computations, huwever, which assures  us t h a t   s p a t i a l   f i l t e r -  

ing  i s  e f f ec t ive .  

1 
2 

F or m max = 23 > 

kxh M 1.64 

which i s  e q u a l   t o   t h e  limit wave  number above. We see, however, tha t   agree-  

ment between the  Aa/h = 1 and &h = 2 computations of Figs .   2 .45 and 

2 . 6 1 ~  i s  not. uniformly  sat isfactory.   This   mans that the   t rue   l imi t  wave 

nuniber i s  somewhat l e s s   t han  1.64 and  suggests  that   Fig.  4 i s  more r ead i ly  

a p p l i e d   t o   t e m p o r a l   f i l t e r i n g   t h a n   t o   s p a t i a l   f i l t e r i n g .  

1 

Fina l ly ,   i n  view of Eqs.  28  (with k = 0),  it i s  not   surpr i s ing   tha t  

t he  Aa/h = 1 acceleration  response  curve of F ig .   2 .19   (as   wel l   as   the   iden-  

t i ca l   ve loc i ty   response   curve  of Fig.   2 .26)  i s  the most physical ly  meaning- 

(see  the  discussion of Subsection 2.2.1).  I n   f a c t ,   t h e s e   f i g u r e s  imply 

t h a t   t h e  Aar/h = 1 frequency  curve l i es  s u f f i c i e n t l y   c l o s e   t o   t h e  improved 

theory  curve  over a s u f f i c i e n t l y  wide  kh-range t o   p r e d i c t   a c c u r a t e l y   t h e  

gross   fea tures  of the  propagation of response  discont inui t ies .  

Y 
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3.2.5 Finite  Difference  Computational  Procedure 

Based on the  results of t h i s  and  the  previous  chapter, it i s  possible  

t o   c o n s t r u c t  a recommended procedure  for   the  appl icat ion of t h e   ( t h i n   s h e l l  

t heo ry}   f i n i t e   d i f f e rence  method i n   s t u d i e s  of t r ans i en t ,   l i nea r  wave propa- 

gation i n  she l l s .   Th i s   p rocedure ,   spec ia l i zed   t o   t he   d i sc re t i za t im  method 

used herein,  

Step 1: 

Step  2:  

Step 3:  

Step 4 :  

S tep  5 :  

Step 6: 

Step 7: 

i s  as   fol lows : 

From Table 2.1, determine  whether, fo r   t he   t ype  of exc i t a t ion  
and the  responses of i n t e r e s t ,  convergence  can  be  expected 
t o  be   s a t i s f ac to ry .  If no  convergence  problems are   an t ic ipa ted ,  
s k i p   t o   S t e p  5 ;  i f  convergence d i f f icu l t ies   a re   expec ted ,   p ro-  
ceed t o   t h e   n e x t   s t e p .  

From information  pertaining t o  the   cha rac t e r i s t i c s  of the  ex- 
c i ta t ion  (Sub-sect ion 3.2.2), determine  an  excitation  cutoff 
frequency 

Using E q s .  30 and 17, compute %. If wm > u) s k i p   t o  
Step 5 ;  i f  u) i s  appreciably  smaller  than wx, proceed 
to   t he   nex t   svep  . 
Temporally f i l t e r   t h e   e x c i t a t i o n   a t  w ; perhaps  the  best  
f i l t e r   t o  use i s  t h e   d i g i t a l   f i l t e r   o f % e f .  28,  which  completely 
suppresses   exci ta t ion components with  f requencies  above the 
f i l ter   cutoff   f requency  while   introducing no  amplitude  or 
phase. d i s t o r t i o n   i n t o   t h e   e x c i t a t i o n  components w i th   f r e -  
quencies  below  the f i l t e r   cu to f f   f r equency .  

If the   cha rac t e r i s t i c   s t ruc tu ra l  wave lengths  along one ax i s  
a re   expec ted   to   be   shor te r  t h a n  those  along  the  other  axis,  
determine  the mesh widths  from Eqs . 28. I f   there   appears  
t o  be  no  preferred  direction,  determine  the mesh widths 
from Eq. 29.* 

For temporal   s tep-by-step  integrat ion  with  an  expl ic i t  numer- 
i c a l  scheme, s e l e c t  t t ime  s tep   va lue   s l igh t ly   l ess   than  
t h e   c r i t i c a l  time  step  given by the  first of Eqs .  1.10. An 
implicit   numerical  scheme permits  the  use of a larger  time 
s t e p  . 
Check the  accuracy of t he   f i n i t e   d i f f e rence   so lu t ion   e i the r  
through  an  error  evaluation  procedure  incorporated  into  the 
numerical scheme or by means  of add i t iona l  runs with smaller 
mesh dimensions. 

O"X * 
N 

X' 

Now the  above recommended procedure i s  based upon the  short  wave length 

l imi ta t ions   assoc ia ted   wi th   f lexura l   she l l   response .  If the   exc i t a t ion  i s  

* 
For  very low frequency  exci ta t ions,  it i s  poss ib l e   t o   u se  mesh widths   larger  
than  those  given  by  Eqs.  28 and 29. The number of nodal   points   per   s t ruc-  
t u r a l  wave length  and/or  the number of time  points  per  temporal wave length 
(period)  then becomes the   dec id ing   fac tor .   (For  frequency-wave number re- 
la t ionships ,   see   Figs .  4 and 5 ). 
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pr imar i ly   in -p lane ,   f lexura l   e f fec ts   p lay  a small ro l e ,  and  the  f lexural  

response   l imi ta t ions   no   longer   apply .   In   th i s   case ,  Eq.  16 gives  a limit 

frequency of we w 2c/h , so t h a t  mesh widths  smaller  than  the  shell   thick- 

ness  may be  prof i tably  used.  If the   exc i t a t ion  and  responses of i n t e r e s t  

are such  that   convergence  diff icul t ies   are   ant ic ipated  (see  Table  2.1), it 

i s  advisable t o  f i l t e r  t h e   e x c i t a t i o n   a t  we i n   t h e  manner of Step 4 i n  

order  not 'LO exceed the   l imi t a t ions  of t h i n   s h e l l   t h e o r y .  Convergence of 

the  f ini te   difference  computat ions may then  be  expected f o r  mesh widths 

smaller  than  about 1 1 
i o A e  = i0(2'rc/we ) w h/3. 

3.3 ADDITIONAL . ~~ CONSIDERATIONS REGARDING THIN SHELL AND IMPROVED THEORIES -~ 

This   sec t ion   br ie f ly   d i scusses   the   so lu t ion  of flexural  response  prob- 

lems by   the  method of modal superposit ion and the method of c h a r a c t e r i s t i c s .  

The resu l t s   ind ica te   tha t ,   whi le   the  modal convergence propert ies   appropriate  

t o  improved theory   a re   genera l ly   be t te r   than   those  of elementary  theory, 

t h e   a b i l i t y  of improved theo ry   t o   t r ea t   f l exu ra l   r e sponse   d i scon t inu i t i e s  

may const i tute   no  real   advantage.  

3.3.1 Convergence ~~ Proper t ies  of t he  Method  of  Modal Superposit ion ~- "~- 

The previous  sections of t h i s   chap te r  have  demonstrated t h a t   t h e  

major l imi t a t ion  on the  f lexural  response  computation  capabili t ies of a 

t h i n   s h e l l   f i n i t e   d i f f e r e n c e  code i s  the   r a the r   l ong   s t ruc tu ra l  wave length 

l imi t a t ion  of t h i n   s h e l l   t h e o r y .  Here we b r i e f l y  examine t h e   e f f e c t  of 

t h i s   s t r u c t u r a l  wave length   l imi ta t ion  on the  method of modal superposi t ion.  

We have  observed i n  Subsection  3.2.3  that  limit frequency  considera- 

t ions   for   f in i te   d i f fe rence   computa t ions  of shel l   response  reduce  essent ia l ly  

t o   t h o s e   f o r  a simple beam. In  addition,  because  convergence  behavior i s  a 

s h o r t   s t r u c t u r a l  wave length phenomenon, boundary  condi t ion  detai ls   are  un- 

important. Hence it i s  s u f f i c i e n t   t o   f o c u s  o m  a t t en t ion  on the   t r ans i en t  

response of a simply-supported beam. 

Consider a simply-supported  Bernoulli-Euler beam t h a t  i s  exci ted  by 

a unif o m  impulsive  load  over a f i n i t e   p a r t  of i t s  length.  The pe r t inen t  

kinetic  energy,  potential   energy and v i r t u a l  work expressions  are   (Fig.  6): 

3-17 
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where I i s  t h e  magnitude of the  applied  impulse.  From the   knmn 

solut ion of the   assoc ia ted   f ree   v ibra t ion  problem, we write 

m = l  

Introducing Eq. 32 i n t o  Eq. 31 and applying  Lagrange's  equation, we ob- 

t a i n   t h e  m d a l  equation of motion;  solution of th i s   equa t ion   then   leads  

t o   t h e   s e r i e s   s o l u t i o n   f o r  beam displacement 

where the  general ized mass Ma , natural   f requency , and generalized 

irnpul s e are   given  by I m  
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Because f l e x u r a l   s t r e s s / s t r a i n  i s  p r o p o r t i o n a l   t o  a2w/a2 , we a r e  

i n t e r e s t e d   i n   t h i s   q u a n t i t y   a s  well as   the   k inemat ic   quant i t ies   d i sp lace-  

m n t  , ve loc i ty  and acce lera t ion .  Thus , s ince  

m , m2 and m (Eq. 34), respect ively,  i . e .  , s ince  Im N m 
and Mm N mo , we f i n d   t h a t  

I m  J 

0 -T 
and M vary as 

2 -1 
J s N m  

w ~m -3 w ~m -. 1 

We observe t h a t   t h e  series for  displacement  response  converges  quite 

s a t i s f a c t o r i l y ;   i n   a d d i t i o n ,  it can  be shown by a theorem of Dedekind 

(Ref.  2 9 )   t h a t  (for t > 0) the  series far ve loc i ty  and s t r e s s / s t r a i n  con- 

verge,  although  they  do s o  slowly. The series for   acce le ra t ion   response  

c lear ly   d iverges .  

Let us nm  cons ider  a simply-supported Timoshenko beam under  an 

ident ica l   loading .  The per t inent   k ine t ic   energy  and poten t ia l   ex-  

pressions for t h i s  beam are   (F ig .  6 )  

R 

T = $ $1 (i2 + (b2) dx 

0 

From t he  known so lu t ion  of the   assoc ia ted   f ree   v ibra t ion  problem, w e  write 

m = l  
W 

m = l  

(37 1 



Introducing Eqs . 37 i n t o  Eqs  . 36 and t h e   l a s t  of Eqs . 31, and performing 

the   in tegra t ions ,  we  obtain 

m= 1 

where i s  g iven   by   the   l as t  of Eqs . 34. I m  

Since  there   are  now two modes for   each  value of m , f u r t h e r   i n -  

ves t iga t ion  of the   assoc ia ted   f ree   v ibra t ion  problem i s  required.  Such 

an invest igat ion  (Ref .  2 7 )  yields  as  an  accurate  approximation  for  the 

f i rs t  mode 

h2 2 
where rm = -1 (7) . In t roduc ing   t h i s   i n to   Eqs .  38 and  applying 

Lagrange's  equation, we obtain  the modal equation of motion whose solu-  

t i o n  i s  

i n  which I i s  given  by  the  las t  of Eqs. 34 and m 
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where ($) i s  given  by E q .  39 and %2 i s  given  by  the  second of Eqs.  34. 
1 

The second mode, being  orthogonal t o  (z) , i s  given  by 

1 

In t roduc ing   t h i s   i n to   Eqs .  38 and applying  Lagrange's  equation, w e  obtain 

the modal equation of motion whose so lu t ion  i s  

i n  which I i s  given  by  the  las t  of Eqs. 34 and m 

, 
where (?) i s  given by Eq. 42 and s2 i s  given  by  the  second of Eqs. 34. 

2 

The above resu l t s   nm  enable   us  t o  wr i t e  dawn our response  solutions.  

Since 

w m ( t )  = w , W  + w m2 ( t )  

(45 1 

we have,  from Eqs .  37, 45, 40  and 43 
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Because f l e x u r a l   s t r e s s / s t r a i n  i s  proport ional  t o  acp/& , we a re  

in te res ted   in   th i s   quant i ty ,   d i sp lacement ,   ve loc i ty   and   acce lera t ion .  

Thus, s ince   ( for   l a rge  m) I N m , ( ( P ~ / w ~ ) ~  r~ m -1 -1 0 

m > % N m  > Md N m  J 

and M cu m2 , we f i n d   t h a t   f o r   l a r g e   v a l u e s  of m m2 

w ~m -2 .. 
w r ~ m  0 

Thus, not  only i s  the  limit frequency  higher   for  improved theory   than   for  

elementary  theory,   but,  from Eqs. 35 and 47, the  modal  convergence  prop- 

e r t i e s  af the   former   a re   genera l ly   super ior   to   those  of t h e   l a t t e r .  

3.3.2 Limitations of Improved  Theory 

She l l   t heo r i e s   i n   gene ra l ,  and t h i n   s h e l l   t h e o r y  and  improved theory 

in   pa r t i cu la r ,   cons t i t u t e   l ong  wave length  approximations t o   e l a s t i c i t y  

theory.  Hence response  solutions  appropriate t o  such  theories  can  be 

considered  accurate  only  by  appeal t o  Saint-Venant ' s  pr inc ip le ,   v iz  . , 
t h a t   t h e   i n c l u s i o n  of t h e   e f f e c t s  of neglected,   self-equilibrating  boundary 

loads would l e a d   t o   s i g n i f i c a n t   c o r r e c t i o n s   i n   t h e   s t r e s s   f i e l d   o n l y   i n  

cer ta in   h ighly   loca l ized   reg ions .  Novozhilov and Slepian have  demonstrated 

in  an  excellent  paper  (Ref.  3 0 )  that ,   for   suddenly  appl ied  loads,   these 

r eg ions   a r e   l oca t ed   a t   t he  wave f r o n t s  and a t   t h e   p o i n t s  of load  appl icat ion.  

A s  an example, cons ider   the   in f in i te   p la te  of Figure 7 t h a t  i s  ex- 

cited  uniformly  along a s t r a igh t   l i ne   by  a s tep  shear   load of t r i angu la r  

prof i le   th rough  the   p la te   th ickness .   Trea t ing   th i s   exc i ta t ion  as the 

superposit ion of a shear  load  which i s  uniform  through the thickness and 
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U 
a se l f - equ i l ib ra t ing   shea r  lcad that varies l inear ly   th rough  the   th ickness ,  

w e  s e p a r a t e   t h e   t o t a l  problem i n t o  two component problems. The f i rs t  has 

been  solved  by  Boley and Chao ( R e f .  18), who used  improved p la te   theory ;  

t h e  second  has  been  solved  by  Novozhilov  and  Slepian, who used a p la te   theory  

one step  "higher"  than improved theory (Ref .  3 0 ) .  

Boley  and Chao present  a snapshot of uniform  shear stress only a t  

t = 5 h / 2 a  c = 1.45 h/c;   the   c losest  comparable r e s u l t   b y  Novozhilov  and 

Slepian for l inear ly-varying  shear  stress  is a t  t = 3h/c = 1 .5  h/c. 

Since  the Novozhilov and Slepian  results  demonstrate  only minor d ispers ion  

over a time  span of 0.05 h/c, t h e i r   r e s u l t  has been "moved back"  and p lo t t ed  

in   F igu re  8a along  with  the  Boley  and Chao result. Because the  magnitude 

Of ne i ther   sp ike  a t  the  shear  wave f ront   decreases  as t h e  wave propa- 

gates  down the  beam, this   f igure  demonstrates   that   the   spikes   which improved 

shel l   theory  ignores   can  be comparable i n  magnitude t o   t h e   s p i k e   t h a t  it 

predic t s .  We f ind,   theref   ore ,   that   consis tent   appl icat ion of a shell theory 

t o   t r a n s i e n t   e l a s t i c  wave propagation  problems  requires that one keep i n  

mind the   l imi t a t ions   appropr i a t e   t o   Sa in t -Vernan t ' s   p r inc ip l e   a t   bo th   t he  

points  of load  appl icat ion and a t   t h e  wave f ronts .   This  means t h a t  compar- 

isons between  elementary and  improved theory  solutions  can  only  be made 

outs ide of these  regions.  

Unce r t a in t i e s   a t   t he  wave f r o n t s  may, i n   f a c t ,  be  only a minor  problem, 

i n  view of F ig .  8b. This   f igure shows the  solut ion of Ref. 30 f o r   t h e  

moment response of a semi- inf in i te   p la te  t o  a s tep  moment applied  uniformly 

along i t s  edge. We observe  that   the  "further improved" theory  demonstrates 

a rapid  "melting away" of t he   ene rgy   a t   t he  wave f r o n t  which i s  no t   i n -  

dicated  by  the improved theory.  Thus, there  i s  a question  whether, a t  

reasonable  distances from the  region of load  appl icat ion,   short  wave length 

pulses   predicted by  improved  (Timoshenko) s h e l l   t h e o r y   a r e   a c t u a l l y   p r e s e n t .  

This i s  i l l u s t r a t e d   i n   F i g .  9, which shows longi tudina l  moment response 

h/2 

-h/2 

f o r  a semi- inf in i te   cy l indr ica l   she l l   exc i ted   by   the   impos i t ion  of an 

axisymmetric,  radial,  ramp-step  velocity a t  i t s  end ( R e f .  16).  The f i g u r e  
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shows moment snapshots a t   c t / a  = 2 fo r   va r ious  ramp r i s e  times. We ob- 

serve tha t ,  even f o r  a rise t ime  as   shor t  as  h/c , the   ramp-step  exci ta t ion 

produces  no  response  comparable t o   t h e   s p i k e   c a u s e d   b y   t h e   s t e p   e x c i t a t i o n  

( tr ise = 0 ) .  
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(a ) Flexura l  Motion 
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(b ) Extensional Motion 

Figure 2 .  Zig-Zag Modes f o r  Cutoff  Frequencies 
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(a)   Funct ion 

(b ) Spectrum 

Figure 3 .  Spectrum of a Triangular  Function 
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p,  Density 
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IC, Shear constant 

Width = Unity 
(Timoshenko Beam only) 

Figure  6 .  Bernoul l i -Euler  or Timoshenko Beam 

Figure 7. I n f i n i t e  P l a t e  
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(b ) S t e p  Moment Load 
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= 2m%/h 
(a ) Step   Shear  Load 

F igure  8. Response of I n f i n i t e   P l a t e s   t o   D i s c o n t i n u o u s  Loads 
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F i g u r e  9 .  Moment Response of a C y l i n d r i c a l   S h e l l   t o   a n  
Axisymmetric,   Radial ,  Ramp-Step V e l o c i t y   E x c i t a t i o n  
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Chapter 4 

EXCITATION OF A SHELL WITH CUTOUTS 

This   chapter   presents   numerical   resul ts   for   the  response of a c i r c u l a r  

c y l i n d r i c a l   s h e l l   w i t h   f o u r   i d e n t i c a l   c u t o u t s   t o  unit impulse  loads  applied 

a t  one end.  These  loads,  the f i r s t  a longi tudinal   load and the  second a 

rad ia l   load ,   a re   g iven   by   ( see  F ig .  A .2 for no ta t ion ) .  

They have been  chosen i r ,  order t o  compare computed r e s u l t s   f o r   t h e   r a d i a l  

exci ta t ion  with  planned  experimental   resul ts   (Ref .  31 ) .  

A diagram of one-eighth of the   she l l ' s   sur face  i s  shown i n   F i g .  1. 

Included i n   t h e   f i g u r e  i s  information  pertaining  to  the  boundary  con- 

d i t ions   se lec ted , ,   the   po in ts   a t  which response  his tor ies   are  computed, 

and the QP and p- l i n e s   f o r  which  response  snapshots  are  obtained. 

Although  the mesh dimensions Ao/h = 1, aAp/h = rr/3 a r e   n o t   i n   s t r i c t  

accordance  with E q s .  3 2 8  or 3.29,  they  constitute  nearly optimum choices 

t h a t   c o n v e n i e n t l y   f i t   t h e   s h e l l  geometry. The t ime  s tep,   se lected  in  

accordance  with  Eqs. 1.10, i s  cat/. = 0.04. The  maximum computation  time 

corresponds t o  the  length of time  requi-red f o r  a d i s turbance   t rave l l ing  

a t   t h e   p l a t e   v e l o c i t y   t o   t r a v e r s e  a d i s tance   equal   to   twice   the   l ength  

of the   she l l   (c tmx/a  = 4.8) .  

Because the  experiments of Ref. 31 r e l y   c h i e f l y  on the  use of holog- 

raphy t o  measure shel l   response,  emphasis i s  placed  here on displacement 

computat ions.   Veloci ty ,   longi tudinal   s t ra in  and ef fec t ive   s t ress   responses  

w i l l  a l s o  be  considered,  however.  Axisymmetric  results  for  the  correspond- 

ing   v i rg in   she l l   wi th  Aa/h = 1 and &h = demonstrate  satisfactory 

convergence for   the  responses   to   be  discussed,   except  when indicated 

otherwise. 

I 
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4.1 LONGITUDINAL  EXCITATION 

Since  the  axisymmetric  response of t h e   v i r g i n   s h e l l  i s  character ized 

by  (kca)2 M ( 2 ~ r / 0 . 8 ) ~  M 60, that response   cons t i tu tes   essent ia l ly  non- 

d ispers ive  wave p ropaga t ion   i n   an   i n f in i t e   p l a t e  (Appendix B ) .  Hence w e  

expect   to   observe  the  "s ta i rcase  longi tudinal   d isplacement   his tor ies   for  

t h e   v i r g i n   s h e l l  shown i n   F i g .   2 .  The corresponding results f o r   t h e   c u t  

she l l   a long   t he   l i ne  p = 0 i n i t i a l l y   d i s p l a y  s i m p i e   r e f l e c t i o n   a t   t h e   l e f t  

edge of the  cu tou t   fo r  (Y = 0.4 and 0.6, as wel l   a s   s ign i f i can t   sh i e ld ing  

e f f e c t s  for oy = 1.0 and 1.2.  Well  behind  the wave f r o n t ,  however, the 

e f f ec t s  of the   cu touts  on she l l   response   a re   no t   very   g rea t ,   except   for  a n  

enhancement of r ad ia l   r e sponse   i n   t he   v i c in i ty  of the  cutouts .   These  effects  

a r e  even l e s s   s i g n i f i c a n t   a t   p o i n t s   a l o n g   t h e   l i n e  $ = rr/12 , a s  shown i n  

F ig .  3 .  Perhaps the c l ea re s t   i nd ica t ion  of t he   sh i e ld ing   e f f ec t s  of the 

cutouts  i s  given i n   F i g .  4, which shows d i sp lacemen t   h i s to r i e s   a t   po in t s  

a long   the   l ine  a/a = 1.2.  While shielding  effects   are   c lear ly   discernable  

in  the  f igure,   they  cannot  be  considered  dramatic.  

Longi tudina l   s t ra in   h i s tor ies ,  however, can  exhibi t   ra ther   dramatic  

e f f e c t s  caused  by the cutouts,  as  demonstrated  in  Figs. 5 and 6.  Whereas 

the  s t ra in   responses  of the   v i rg in   she l l   conta in   negl ig ib le   f lexura l  con- 

t r i b u t i o n s ,   s i g n i f i c a n t   f l e x u r a l   s t r a i n  re.sponse  does  occur i n  the cu t  shel l  

near   the   cu touts .   Shie ld ing   e f fec ts  of the  cutouts   are  shown i n   F i g .  7, 
which presents   s t ra in   h i s tor ies   a t   po in ts   a long   the   l ine   a /a  = 1 . 2 .  

Although  the  cutouts have a subs t an t i a l   e f f ec t  on i n d i v i d u a l   s t r a i n   h i s t o r i e s ,  

t h e i r  impact on values of peak s t r a i n  i s  rather  minor. 

Figures 8-13 show displacement  snapshots f o r  the   longi tudina l   l ines  

p = 0,  n/12, and n/4 a t  times  ct/a = 0.8,  1.2,  2.0,  3.2, 4.0, and 4.4. 
These r e s u l t s  seem t o  add l i t t l e  new information t o   t h a t   o b t a i n e d  from 

Figs.  2-4. They are   included  mainly  for  comparison wi th  possible   future  

experimental results obtained  by  holographic  techniques. They  do i l l u s t r a t e ,  

hcwever, that ,   a l though  snapshats   are   very  useful   for   the  interpretat ion of 

simple wave p ropaga t ion   behav io r ,   t hey   t end   t o   l o se   t he i r   e f f ec t iveness ,   a t  

l e a s t   f o r   t h e  purposes of these  invest igat ions,   as   the  behavior  becomes 

increasingly  complicated.  For complex response,   then,  response  histories 

seem t o  emerge as   the  more e f f ec t ive   i n t e rp re t ive   t oo l .  



Figures 14 and 15 are presented to   ind ica te   the   degree  of c i r c m -  

ferentia1 non-axisymmetry  produced  near t he  wave f ron t  of t h e   t r a n s i e n t  

wave by   the   cu touts .  From F ig .  14, w e  observe that, a f t e r   t h e  wave f r o n t  

has  passed  the  cutouts,  and e s p e c i a l l y   a f t e r  it has  been  reflected from 

the  boundary a t   d a  = 2.4 , longitudinal  displacement  response  near  the 

wave f r o n t   t e n d s   t o  become nuninally  axisymmetric. Much  of t h i s  i s  due t o  

the  steady  growth of r t g i d  body displacement. The tendency  toward  axisym- 

metry, however, also charac te r izes   the   longi tudina l   ve loc i ty  and s t r a i n  

responses  near  the wave f r o n t ,   e x c e p t   i n   t h e   v i c i n i t y  of the  cutouts   (Fig.  15 ). 
Radial  displacement  and  velocity  response  tends t o  become increasingly 

p-dependent as  time  proceeds  (Fig. 14). 

A question  that   remains unanswered by  the  present  computations i s  

whether  the  presence of t he   cu tou t s   t ends   t o   f ac i l i t a t e   t he   l a rge - sca l e  

t r a n s f e r  of energy from extens iona l   (pr imar i ly   longi tudina l )   in to   f lexura l  

(pr imary   rad ia l )   response .   This ,   in   fac t ,  seems t o  be  developing i n  

Figs .  5a, 5b, 5c and 6b; on the  other hand, it seems t o  have  been  suppressed 

i n   F i g .  5d. A s a t i s f a c t o r y  answer  can  only  be  provided  by a long-time 

solut ion,  one t h a t  i s  not  efficiently  obtained  by  the  present method. It 

i s  a problem of considerable   interest ,  however,  because  such  an  energy 

t ransfer   can   l ead   to   very   l a rge   rad ia l   responses .  

4 .2  RADIAL EXCITATION 

A s  implied  ear l ier ,   the   choice of the  radial   load  used  here was con- 

s t ra ined   by   the   charac te r i s t ics  of an  electromagnetic  repell ing  wire  ex- 

c i t a t i o n  mechanism t o   b e  used i n  planned  experiments  (Ref. 31). I n  one 

sense this i s  unfortunate ,   s ince  the  resul t ing  pulse   load  possess   an  ex-  

c i ta t ion   cu tof f   f requency   tha t  i s  about 2-1/2 'times  the l i m i t  frequency 

given  by Eq. 3.30. Hence, from Table 2.1, s t ress /s t ra in   responses  computed 

with  the  present code a re   inaccura te .  This i s  i l l u s t r a t e d   i n   F i g .  16, 
which shows l o n g i t u d i n a l   s t r a i n   h i s t o r i e s   f o r   t h e   v i r g i n   s h e l l  computed 

with Aa/h = 5 and 1. We observe that t h e  peak  responses computed with 

Aa/h = 1 exceed the  corresponding  responses computed with Aa/h = p by 

a s  much a s  5 6 .  

1 
1 
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We a l so   obse rve   t ha t   t he  Aa/h = 1 responses of F ig .  16, espec ia l ly  

f o r  a/. = 0.4 and 1.0 , contain small ampl i tude   o sc i l l a t ions   a t   t he  mesh 

cutoff  frequency  (Eq. 3.9) tha t   a re   no t   p resent   in   the   cor responding  

Aa/h = $ responses.   This i s  due t c  the   f ac t   t ha t   t he   exc i t a t ion   cu to f f  

frequency l i e s  above the  mesh cutoff   f requency  for  Aa/h = 1 , bu t  below 

t h a t  for a d h  = 

mesh does  not. 

a r e   supe r io r   t o  

in   Sec t ion   3 .2 .  

In  another 

1 Hence the  A@/h = 1 mesh "rings"  while  the Aa/h = 2 - 
2 .  
This  does  not  necessarily mean t h a t   t h e  Aa/h = $ responses 

the Aol/h = 1 responses, however, for  the  reasons  given 

sense,  the  shortness of the  pulse  load i s  only of minor 

consequence,  since we are   mainly  interested  in   displacement   responses ,  

which do   exh ib i t   s a t i s f ac to ry  convergence  behavior  (Table 2 . 1 ) .  Thus we 

proceed t o   F i g .  17, which shows displacement  histories  for  the  virgin 

s h e l l ;  we observe t h a t   t h e   f l e x u r a l  wave f ron t   t r ave l s   a t   abou t   t he   shea r  

ve loc i ty  c = [ F  ( 1 - u  ) ]  ' l 2 c  , while   the  longi tudinal  wave f r o n t   t r a v e l s  

s l i g h t l y   f a s t e r .  Corresponding  histories  along  the  l ine $ = 0 on the 

cu t   she l l   a r e  shown i n   F i g .  18. We immediately  note  the  dramatic  increase 

in   rad ia l   d i sp lacement   response   a t   the   f ront  edge of each  cutout  over  the 

corresponding  response of the   v i rg in   she l l .  The opposite  occurs  ( to a 

lesser   degree ) a t   t h e  back  edge of each  cutout. Only  minor diff&rences 

occur away from the  cll touts.  

1 
S 

Shie ld ing   charac te r i s t ics  of the   cu touts   a re   ind ica ted   in   F ig .  19, 
which shows d isp lacement   h i s tor ies   a t   po in ts   a long   the   l ine  a/a = 1.2.  

The cutouts seem t o  produce a moderate reduct ion   in   rad ia l   d i sp lacement  

response  in   the shadow regions  behind them. Figures 20-23 show displace-  

ment snapshots of both  the  virgin and cut  shell   displacement  responses 

a long   the   longi tudina l   l ines  $ = 0 ,  n/12 and n/4 a t  t imes  ct/a = 0.8,  
1.2, 2.0 ,  3.2, 4.0, and 4.4.  Here too  the  response  his tor ies  seem t o  be 

less   e f fec t ive   as   in te rpre t ive   too ls   than   response   snapshots   for   increas-  

ing ly  complex response.  Figures 20-23 are  included  mainly  for  comparison 

with  experimental   results  obtained  by  holographic  techniques.  

Let us now examine the  degree of non-axisymmetry in  the  displacement 

response of a shel l .   Figure  24 shows displacement  snapshots  along  lines 

of constant  near and well  behind  the  shear wave f r o n t .  We see   tha t ,  

whi le   the  longi tudinal   d isplacement   response  tends  to   be B-independent, 
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radial  displacement  response  tends t o  become increasingly fj-dependent. 

This  behavior i s  the same a s   t h a t  observed i n   F i g .  1 4  for   the   longi tudina l  

exc i t a t ion .  

We have he re   t oo   t he   i n t e re s t ing   ques t ion   a s   t o  whether  the  presence 

of the  cutouts  tends t o   f a c i l i t a t e   t h e   l a r g e - s c a l e   t r a n s f e r  of energy 

f rom  ex tens iona l   (pr imar i ly   ax isymmetr ic   rad ia l )   in to   f lexura l   (pr imar i ly  

non-axisymmetric rad ia l )   response .  Long-time solut ions  are   again  required 

t o  answer th i s   ques t ion .  

4.3 SUMMARY 

We have  examined here  the  early-time  response of a c y l i n d r i c a l   s h e l l  

w i t h   c u t o u t s   t o  end pulse-loads whose spa t ia l   wid th   appropr ia te   to   p ropa-  

g a t i o n   a t   t h e   p l a t e   v e l o c i t y  i s  only  eight  times  the  thickness of the 

s h e l l .  Computed resul ts   indicate   that   the   cutouts   introduce no order-of- 

magnit~~de  changes  in  the  response of t h e   s h e l l .  They do  point t o  moderate 

s h i e l d i n g   e f f e c t s   i n  shadow regions  behind  the  cutouts, however. Further-  

more, they  suggest   that   the   cutouts  may f a c i l i t a t e   t h e   t r a n s f e r  of load- 

in jec ted   ex tens iona l   energy   in to  non-axisymmetric f lexural   response,  a 

po ten t i a l ly  dangerous s i tuat ion.   Defini t ive  conclusions  about   this  phenom- 

enon, however, await  long-time  solutions. 

A broad pic ture  of t he   e f f ec t s  of the  cutouts on the  response of the  

s h e l l  i s  given i n   F i g .  2 5 .  For each   po in t   a t  which a response  history was 

computed,  two r a t i o s  of peak  response in   the   cu t   she l l   to   the   cor responding  

peak  response i n   t h e   v i r g i n   s h e l l   a r e  shown. The responses  chosen  for 

t h e s e   r a t i o   i n d i c a t o r s   a r e ,   f o r   t h e   l o n g i t u d i n a l   e x c i t a t i o n ,   l o n g i t u d i n a l  

ve loc i ty  and e f f e c t i v e   s t r e s s  and, fo r   t he   r ad ia l   exc i t a t ion ,   r ad ia l   ve loc i ty  

and ef fec t ive   s t ress .   Veloc i ty   response  i s  chosen  because it i s  often con- 

s i d e r e d   t o   b e   t h e  most usefu l   ind ica tor  of damage po ten t i a l   fo r   a t t ached  

s t r u c t u r a l  systems  (see,  e.g.,  Ref. 3 2 ) .  Effec t ive   s t r e s s  for the  Mises 

y i e ld   su r f ace ,   i n   t he  form  (Ref. 10) 
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i s  chosen  because it i s  a use fu l  measure of  damage p o t e n t i a l  for the s h e l l  

i t s e l f .  Even though the ve loc i ty  and s t r a i n  computations  appropriate t o  

the rad ia l   loading   a re   no t   en t i re ly   sa t i s fac tor i ly   convergent ,   they   a re  

considered  adequate for the purposes of Fig.  25. 

We observe i n   F i g .  25 that the  cutouts   appear  t o  possess   s ign i f icant ly  

g rea t e r   sh i e ld ing   capab i l i t y   fo r   t he   r ad ia l   exc i t a t ion   t han   fo r   t he   l ong i -  

t ud ina l   exc i t a t ion .  We a l s o  observe  that  the  related  tendency  toward 

non-axisymmetry i s  more p reva len t   i n   t he   ca se  of t h e   r a d i a l   e x c i t a t i o n .  

The e f f e c t  of reinforcement of the cutout on these   r e su l t s  would be of 

considerable   interest  and a worthwhile  subject of fu ture   s tud ies .  
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Figure 2 .  Virgin Shell and ( e  = 0 )  Cut Shell Displacement  Histories 
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Chapter 5 

CONCLUSION 

This   report   contains:  (1) a n a l y t i c a l  and numerical   s tudies   per ta ining 

t o   t h e   s o l u t i o n  of t r ans i en t ,   l i nea r  wave propagation  problems i n   t h i n   s h e l l s  

by   the   f in i te   d i f fe rence  method (Chapters 2 and 31, (2)  a recommended com- 

putat ional   procedure  for   the  use of the method (Chapter 3 ), and (3 ) a numer- 

i c a l   i n v e s t i g a t i o n  of the  response of a c y l i n d r i c a l   s h e l l   w i t h   c u t o u t s   t o  

both  longi tudinal  and rad ia l   t rans ien t   exc i ta t ions   (Chapter  4 ) .  An out l ine 

of major conclusions  and recommendations for   fu ture   s tudy   fo l lows:  

5 . 1  MAJOR CONCLUSIONS 

o The f i n i t e   d i f f e r e n c e  method accurately  reproduces  solutions of 
t he   pa r t i a l   d i f f e ren t i a l   equa t ions  of l i n e a r   t h i n   s h e l l   t h e o r y  
i f   t he  mesh dimensions are   appreciably  smaller   than  the  shortest  
s i g n i f i c a n t   s t r u c t u r a l  wave length  characterizing  the  response of 
i n t e re s t .   (Sec t ions  2 . 5  and 3 -1) 

o The only  inherent   l imitat ion of t h e   f i n i t e   d i f f e r e n c e  method i s  i t s  
i n a b i l i t y   t o  reproduce  accurately  response  discontinuities,  a limi- 
t a t i o n   t h a t   a l s o   a p p l i e s   t o   t h e  method of modal superposit ion  but 
does not  apply t o   t h e  method of charac te r i s t ics .   (Sec t ions   2 .5  and 
3.1)  

o The shor t  wave length   l imi ta t ions  of th in   she l l   (Bernoul l i -Euler )  
theory  create   s ignif icant   convergence  diff icul t ies   in  computed 
responses t o   c e r t a i n   t y p e s  of t ransverse  exci ta t ions.   (Sect ions 
2 . 5  and 3 . 2 )  

o Proper  selection of f i n i t e   d i f f e r e n c e  mesh dimensions,  combined,in 
some cases,  with  temporal  smoothing of the   exc i ta t ion ,   increases  
the  frequency  range of th in   she l l   (Bernoul l i -Euler )   theory   by  a 
f a c t o r  of th ree   for   t ransverse   exc i ta t ions .   (Sec t ion   3 .2)  

o Convergence d i f f i c u l t i e s   i n   t h e   c a s e  of t ransverse   exc i ta t ions  may 
be mater ia l ly   a l leviated  through  the  use of improved (Timoshenko) 
theo ry ;   t he   ab i l i t y  of improved theo ry   t o   t r ea t   f l exu ra l   r e sponse  
d i scon t inu i t i e s  , however, may const i tute   no  real   advantage.  
(Sections 3.2 and 3.3)  

o Cutouts i n  a c y l i n d r i c a l   s h e l l   e x c i t e d   a t  one end by  axisymmetric 
longi tudina l  and radial  pulse-loads  produce  moderate  changes i n  
shel l   response  during  ear ly  and intermediate  t imes;  the  cutouts 
may, however, fac i l i t a te   the   undes i rab le   l a te - t ime  t ransfer  of 
load-in  jected  extensional   energy  into  non-axisyxnetr ic   f lexural  
response  (Section 4.3) 
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5.2 RECOMMENDATIONS FOR l?UTURE STUDY 

o The s tudies  of Chapter 2 should  be  extended t o  inc lude   exc i ta t ions  
t h a t   a r e   s p a t i a l l y  narrow in   t he   c i r cumfe ren t i a l  dimension;  numeri- 
c a l   s t u d i e s   a r e   r e q u i r e d .  

o The computational  procedure recommended in   Sec t ion  3.2, e spec ia l ly  
tha t   a spec t  which dea l s   w i th   t empora l   f i l t e r ing  of the   exc i ta t ion ,  
should  be  thoroughly  tested;  numerical  studies  are  required. 

o The advantages and disadvantages  associated  with  the  use of improved 
theory   as  opposed t o   t h e  use of t h in   she l l   t heo ry   shou ld   be   de f in i t e ly  
es tab l i shed;   bo th   ana ly t ica l  and numerical   s tudies   are   required.  

o The shor t  wave length   l imi ta t ions  of improved theory  should  be  de- 
termined  with  the  techniques of Ref. 30; ana ly t i ca l   s tud ie s   a r e  
required.  

o The degree t o  which cutouts  may f a c i l i t a t e   t h e   l a t e - t i m e   t r a n s f e r  
of load-injected  extensional  energy  into  non-axisymmetric  f lexural 
response  should  be  determined;  solution  by  the method of modal 
superposi t ion i s  sugges ted   for   th i s   t ask .  

o The e f f e c t s  of re inforced   cu touts ,   s t ruc tura l   ( r ing  and longi tudina l )  
s t i f f e n e r s ,  and attached  mechanical  systems on the  propagation of 
t r a n s i e n t  waves in   shel ls   should be investigated;  numerical   studies 
a re   requi red .  

o The e f f e c t s  of geometric  and  material   nonlinearit ies on the  genera- 
t i o n  and propagation of t r ans i en t  waves in  shells  should  be examined; 
numerical   s tudies   are   required.  

o A comprehensive  study that compares f in i t e   d i f f e rence ,   f i n i t e   e l emen t ,  
modal superposit ion and c h a r a c t e r i s t i c s  methods for   the   so lu t ion  of 
problems involv ing   t rans ien t   l inear  wave propagat ion  in   shel ls   should 
be  performed. 
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Appendix A 

THE STAR CODE 

The f i n i t e   d i f f e r e n c e  computer  program. STAR (Shel l   Transient  Asymmetric 

Response) i s  capable of computing the  two-dimensional,  finite-amplitude 

response of ine las t ic   she l l s   wi th   unre inforced   cu touts   to   mechanica l  and 

thermal   t ransient   loads.  The code i s  based on t h e   g e n e r a l   t h i n   s h e l l  

equations of Ref. 6 and on cons t i tu t ive   equat ions   for  a temperature- 

dependent,  work-hardening  material. A de ta i led   descr ip t ion  of the code 

i s  given  in  Ref.  10; this appendix  merely  defines  pertinent  notation  and 

describes improvements made i n   t h e  code a s   p a r t  of the  present   s tudy.  

A .  1 GEOMETRIC NOTATION 

The middle surface of t h e   s h e l l  i s  shown i n   F i g .  1. The l i n e s  of 

pr incipal   curvature ,  CY = constant and $ = constant ,   are   selected  as   the 

coordinates of the  middle  surface of t h e   s h e l l .  The coord ina te   i n   t he  

d i rec t ion  of the inward  normal t o   t h e  middle surface i s  denoted by z .  

We see  that   the   coordinates   are   such  that  ( a ,  $, z )  form a right-handed 

system. The element of a rc   l ength  ds  on the middle surface i s  given by  

where A (  a, p )  and B( a, p )  are   the  Lame ' parameters   for   the middle 

surface of the undeformed she l l .   F igure  1 a l s o  shows the   p r inc ipa l  

r a d i i  of curvature r the  displacement components u, v, w ,  and 

the   ro t a t ion  components . The components (u, u) ), ( v, we) '  and w 
a re   t aken   pos i t i ve   i n   t he   d i r ec t ion  of increasing cy, and z , 
respec t ive ly .  

a, r p '  
wcy, w$ CY 

If (Y denotes   e i ther   the   a rc   l ength  measured along  the  generator  from 

the  apex of a c i r c u l a r  cone or t he  end of a c i rcu lar   cy l inder ,  and i f  $ i s  

the   angular   coord ina te   in   the   c i rcumferent ia l   d i rec t ion ,   then   the  Lame' par-  

ameters  and rad i i  6f curvature f o r  these   sur faces   a re  es follows : 
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A B r 
CY 

r 
B 

Cone 1 (Y s i n  cp m CY t a n  cp 

Cylinder 1 a CD a 

where cp i s  the  half  cone angle and a i s  the   rad ius  of the   cy l inder .  

A .2 IMPROVEMENTS I N  THE CODE 

Improvements t o   t h e  STAR computer  program made during  the  present  

s tudy  are  now summarized. 

A.2.1 End Loadings 

I n  many  wave propagation  problems it i s  of i n t e r e s t   t o  determine 

the  response of she l l s   exc i ted   by  end loadings.   This i s  effected  through 

the   spec i f ica t ion  of nonhomogeneous boundary condi t ions.  However, p r io r  

to   the   cur ren t   s tudy ,   on ly  homogeneous boundary  conditions  could  be  handled 

by  the STAR code. A s  a r e s u l t  of the  present work, t h i s   r e s t r i c t i o n  has 

been removed f o r   c y l i n d r i c a l  and con ica l   she l l s ,  and various  combinations 

of nonhomogeneous, time-dependent  boundary  conditions now can  be  handled 

through  specif icat ion of one member of each of the   fo l lawing   pa i r s   (F igs .  1 

and 2 ) :  

o A t  a boundary p = constant ~- 
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A . 2 . 2  One-Dimensional  Problems 

The STAR code,  which was o r ig ina l ly  developed 

response of she l l s ,  can, of course ,   a l so  accommodate 

f o r   t h e  asymmetric 

one -dimensional 

problems,  such as  axisymmetric  shells  under  axisymmetric  loads  or  rings 

s u b j e c t e d   t o  asymmetric loads.  However, p r i o r   t o   t h e   c u r r e n t   s t u d y ,  

spec ia l   l og ic  had not  been  provided  for  such  problems.  Thus, t o   d e f i n e  

the   f i n i t e   d i f f e rence   expres s ions   fo r   spa t i a l   de r iva t ives   i n   t he   gene ra l  

equations, it was necessary t o   s p e c i f y  a minimum  of f ive   nodal   po in ts   a long  

each of the  g r i d  l i n e s   i n   t h e  a and $ d i rec t ions .  For one-dimensional 

problems  (such  as many  of the  problems  considered i n  Cnapter   2) ,   th is   pro-  

cedure i s  obviously  qui te   ineff ic ient  and  hence,  fox-  reasons of  economy of 

computer run  time,  the code was modified t o   t r e a t  one-dimensional  problems 

more e f f i c i e n t l y .  A s  a r e s u l t  of the  mcdification,  only one s e t  of g r id  

l ines  (rather  than  two)  needs t o  be  specified; th is  l e a d s   t o  a reduction 

of run time  by a f a c t o r  of approximately  f ive.  

A.2.3 Kore Accurate  Computation of Velocity 
~ 

To descr ibe  the  expl ic i t   numerical   technique employed i n   t h e  com- 

putat ion Of the   ve loc i ty  components a t   e a c h  mesh point ,  it i s  s u f f i c i e n t  

to   cons ider   the  normal component, ; ( t)  , which  had  been  previously corn- 

puted  from 

where ( * ) denotes   d i f fe ren t ia t ion   wi th   respec t   to   t ime t , and A t  i s  

the  t ime  step.   Equation 2 can  be  derived  either  from a Taylor series 

representat ion of G ( t )  , with   re ten t ion  of only  linear  terms, or from a 

forward   f in i te   d i f fe rence   approximat ion   for  v(t-At). The t runca t ion  

e r r o r  < ( t )  as computed from Eq. 2 i s  O ( A t ) 2 . *  A t runca t ion   e r ro r  of 

order ( A t ) 3  i s  achieved if the   ve loc i ty  i s  instead computed from 

st 
o(  A t ) 2  denotes a term  with  an  error  of order ( A t ) '  
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, _. ... . . 

This expression may be  der ived from the   cen t r a l   d i f f e rence   r ep resen ta t ion  

W(t-At/2) - 1 [ G ( t )  - G ( t - A t ) ]  
A t  

and the  approximation 

The l a s t   t e r m   i n  Eq.  3 i s  computed from  the  equation of motion in   t he  

normal d i rec t ion ,  namely, 

Y ( t )  = F Z ( t )  - C Z G ( t )  ( 6  

where Cz i s  a viscous damping coe f f i c i en t  and F i s  a known funct ion 

of the  displacement  and  the  loads. The introduct ion of E q .  6 i n t o  E q .  3 
yields   the  fol lowing O (  expl ic i t   express ion  f o r  t he   ve loc i ty   t ha t  

i s  cur ren t ly  employed i n   t h e  STAR code: 

Z 
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Figure 1. Notation and Coordinate  System  (Right-Hand  Vector  System) 

FORCE  RESULTANTS 

MOMZNT RESULTANTS 

Figure 2 .  Sign  Convention f o r  S t resses  and St ress   Resul tan ts  
(Right -Hand Vector  System) 
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Appendix B 

AXISYMMETRIC LONGITUDINAL EXCITATION 

OF A MEMBRANE CYLINDRICAL  SHELL 

For axisymmetric,  predominantly membrane  wave propagation, Eqs . 1.7 
f o r   t h e   c i r c u l a r   c y l i n d r i c a l   s h e l l  become 

If an a x i a l  wave propagates down t h e   s h e l l   t h a t  i s  characterized  by a 

s t r u c t u r a l  wave  number k (=  2n/h ), we have u - u (a)eikckt, so  t h a t  

t h e  second of Eqs. 1 becomes 
0 

2 2 
a w  
a t2  aa a 

C avo c 2 ikckt  - + ( g )  w NU" e 

This i s  just   the  equation  for  an  harmonically  excited  single-degree-of - 
freedom o s c i l l a t o r .  NOW i f  (ka)  << 1 and  ck < c y  (kck) << (g) , 
s o  t h a t   t h e   o s c i l l a t o r  i s  exci ted  wel l  below i t s  natural   f requency.  For 
such a quas i - s ta t ic   exc i ta t ion   the   iner t ia l   t e rm  in   Eq .  2 i s  unimportant, 

and we have 

2 N 2 c 2  

w ~ v a -  au 
aa 

In t roduc ing   t h i s   i n to   t he  f i r s t  of Eqs. 1, w e  obtain 
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s o  t h a t  the (non-dispersive) wave t r ave l s   w i th   t he   ba r   ve loc i ty  

1/2. If , however,  (ka ) >> 1 and  ck c , then 
2 

t h e   i n e r t i a l  term i n  Eq. 2 i s  dominant,  and we have 

In t roduc ing   t h i s   i n to   t he  f i r s t  of Eqs. 1, we obtain 

With u - Uoe i((-Ukt-ka) , t h i s   y i e lds ,   s ince  (ka ) >> 1, 2 

so   t ha t   t he  wave t r ave l s   e s sen t i a l ly   w i thou t   d i spe r s ion   a t   t he   p l a t e  

v e l o c i t y   e .   F i n a l l y ,   i f  ka N 1 , no s impl i f ica t ion  i s  possible and 

the  propagation i s  charac te r ized   by   s ign i f icant   d i spers ion .  

We have j u s t  observed tha t ,   fo r   ax ia l ly   p ropagat ing   d i s turbances  

with pronounced cha rac t e r i s t i c  wave lengths,   long wave length  disturbances 

[(ka) >> 13 propagate  as  nondispersed waves along a bar  and shor t  wave 

length  dis turbances  [ (ka)  >> 13 propagate  as  nondispersed,  straight- 

c res ted  waves i n   a n   i n f i n i t e   p l a t e .  For general   exci ta t ions,  however, a 

more sophis t ica ted   ana lys i s  i s  required.  

2 

2 

B .1 PERTURBATION TECHNIQUE 

Let US write  Eqs.  1 i n  terms of the  non-dimensional  variables 

u = u/a, w = w/a, 7 = ct /a  A A 
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and  then  omit  the  circumflex  notation  to  obtain 

We  now expand u and w as   fol lows 

subs t i t u t e   i n to   Eqs .  9,  and equate   the   coef f ic ien ts  of l i k e  powers of 

u to  obtain  the  displacement  recursion  formulas 

, i = 0,1,2, . . .  

Considering  the  r ight  side of each of these  equations  as known, we see 

t h a t   t h e   e q u a t i o n s   a r e   p a r t i c u l a r l y   e a s y   t o   s o l v e ,   t h e   f i r s t   b e i n g   t h e  

wave equation and the  second  the  equation of motion f o r  a simple o s c i l l a t o r .  

Furthermore,   satisfaction of the  appl icable  boundary cond i t ions   a t   t he  

ze ro th   l eve l   y i e lds  w ( O )  = u ( l )  = = = . . . = 0 .  Thus, s ince  

v2 i s  general ly  much smaller  than  unity,  convergence of t h e   s e r i e s  of 

Eqs. 10 i s  rap id .  We now i l l u s t r a t e   t h e   a p p l i c a t i o n  of the  per turbat ion 

technique  by  t reat ing t.wo simple  impact  problems f o r  a semi- inf ini te  

s h e l l  . 
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Consider  an in i t ia l ly   qu iescent   semi- inf in i te   she l l .   tha t  i s  subjected 

t o  a prescr ibed  longi tudinal  end  displacement  u(0,t) = f ( T ) H (  T )  , where 

H (  T )  i s  the  Heaviside  step-function. From Eqs . 11, then, 

where f ' i s  the   der iva t ive  of f with  respect  to i t s  a r g m e n t .  
3t 

We  now seek u (2) (u") being  zero)  which, from Eqs . 11 and 12, 

i s  given by 

The des i r ed   pa r t i cu la r   so lu t ion   t o   t h i s   equa t ion  i s  of the form 

Thus, Eqs . 13 and 14 yield 

7-CY 

0 

The homogeneous s o l u t i o n   t o  E q .  13 i s  of the form 

r 
Response d i scon t inu i t i e s   a r e  most conveniently  handled  through  the  use 
of general ized  funct ions.  
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Fina l ly ,   s ince  u ( O )  s a t i s f i e s  our boundary  condition a t  ~y = 0 , 
w e  have u ' ~ ) ( O , ~ )  = 0 , which,  from Eqs. 14 and 15, yie lds  

Thus,  from Eqs  . 14, 15 and 17, we obtain 

7-CY n 

so   tha t ,  from E q s .  10, 12 and 18, 

0 0  

AS T increases ,   addi t ional   terms  are   required;  for example, we w i l l  

require  below the   addi t ion  of the  O ( u  ) term t o  the second of E q .  19. 
From E q .  18 and the  second of E q s .  11, this term i s  given by 

3 

where 
n 



and  from Eq.  20, 

Figure 1 presents   longi tudinal   and  radial   veloci ty   snapshots  from 

Eqs .  22 and  from Refs. 13 and 1 4  f o r  ? = 2 and 5. The results from 

R e f .  14 were obtained  by  application of t he  method of c h a r a c t e r i s t i c s  

t o   t h e  membrane she l l   equa t ions ;   the   resu l t s   f rom R e f .  13 were obtained 

by  appl icat ion of t h e  method of cha rac t e r i s t i c s   t o   equa t ions   appropr i a t e  

t o  improved  (Timoshenko) she l l   theory .   F igure  2 shows longi tudinal  and 

radial   veloci ty   snapshots   f rom E q s  . 22 and  23  and  from  Ref. 1 4  f o r   t h e  

r a the r   l a t e   t ime  T = 10. We observe  the  s ignif icant  improvement i n   t h e  

s o l u t i o n   f o r  4 ( ~ ~ , 1 0 )  through  the  addition of t he  O ( u  3 ) term. 

Longitudinal and circumferent ia l  membrane s t r e s s   i n   t h e   c y l i n d r i c a l  

she l l   a re   g iven   by  

0 = - -  au yw u acu 

0 9 ” W + V -  aCY 
- au 

where 0 and og are  norulalized t o  E / ( l - u  ). Resul ts   for   these 

quan t i t i e s   i n   t he   fo rm of snapshots a t  T = 2 and 5 appear i n   F i g u r e  3 .  
The 0 - results from E q s .  22 and  24 include  terms up t o  and  including 

those of order u 2  , while   the 0 - results  from  those  equations  per- 
9 

t a i n   t o  a s ingle  O ( u )  term. The r e s u l t s  from R e f .  14 p e r t a i n   t o  a 

modal superposit ion  solution of  membrane theory  shell   equations,   while 

those  from R e f .  13 p e r t a i n  t o  a method of c h a r a c t e r i s t i c s   s o l u t i o n  of 

improved theory  shel l   equat ions.   Figure 4 shows longi tudina l   and   c i r -  

cumferential  membrane s t r e s s   snapsho t s   a t  T = 10. A - r e s u l t   w i t h  

2 
CY 

CY 

7 % 
terms up t o  and including  those of order vJ i s  shown i n   t h i s  

we no t i ce   he re   t oo   t he   s ign i f i can t  improvement in   t he   so lu t ion  

the   addi t ion  of t he  O ( u 3 )  tern1 t o   t h e  second of Eqs. 19. 

We observe in   F igures  1-4 t h a t  a per turbat ion  solut ion of 

f igu res ;  

through 

given 

order  begins t o   f a i l   a s  7 increases .   This  comes a s  no  surpr ise ,   s ince 

we expect  the  cumulative  effects of coupl ing  through  Poisson’s   ra t io  

eventua l ly   to   p roduce   such   fa i lure .  It is ,  i n   f a c t ,   r a t h e r   s u r p r i s i n g  
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t h a t   t h e  T = 5 and 10 solut ions of Figures 1-4 are   as   accura te   as   they  

are ,   s ince we a l so   expec t   to   encounter  convergence  problems a s  v T 

approaches  unity. Even when v 7 > 1 , however, the  per turbat ion  solu-  2 -  

t i o n  i s  convergent i n   t h e   v i c i n i t y  of the wave front.  Furthermore, when 

7 >> 1 , asymptotic methods may be  used t o  obtain  solutions,  as i n  Ref. 33. 

2 

B -3  PRESCRIBED END LOAD 

We  now cons ider   an   in i t ia l ly   qu iescent   semi- inf in i te   she l l   tha t  i s  

excited  by a prescr ibed  longi tudinal  end load 5 ( 0 , ~ )  = f ( 7 )  H( 7 ) .  To 

t r e a t   t h i s  problem, we use E q s .  24 t o  transform  Eqs. 9 i n t o   t h e   s e t  
CY 

2 2 2 
a OCy " 2 a OCy 

aT a a  aT 

a a  
2 ( 1 - v  ) - 2 - 9 2 = 

0 

N O W  it i s  c lear   tha t   these   equat ions   l ead   to   per turba t ion   so l ' l t ions  which 
~ 2-12 

pred ic t   t ha t   t he   waveeon t   t r ave l s   a t   t he   ba r   ve loc i ty  Cb = (1-11 ) C - 
Hence, ye  recombine these  equat ions  to   obtain  the  equivalent   set  
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Following  the same procedure  used t o  obtain Eqs .  11, we obtain  the 

s t r e s s   r ecu r s ion  formulas 

Sa t i s f ac t ion  of the  boundary  conditions  appropriate  to  these  equations 

a t   t h e   z e r o t h   l e v e l   y i e l d s  (0) - - (1) = CJ ( 2 )  = CJ ( 3 )  = . . .  = 0. 
OCY e CY 

For the   prescr ibed end load C J ~ ( O , T )  = f ( 7 )  H(T) , we obtain from 

Eqs. 27 

Next we seek CJ ( 2 )  , which,  from E q s .  27 and 28, i s  given  by 
CY 

Proceeding as   before ,  we f i n d  

so  t h a t ,  from E q s  . 28 and 30 
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A s  increases ,   addi t ional  terms are   again  required;  for example, from 

Eq. 30 and  the  second of E q s .  27, t he  O ( u  ) term f o r  (J (CY,T) is given 3 
e 

by 

7- CY 

where F (7 )  i s  given  by  Eq. 21  and F ' (7 )  i s  the   der iva t ive  of F ( 7 )  

with  respect t o  argument. 

A s  an  example, w e  consider  the  case of a  ramp end-load; i .e ., 
f ( T )  = 7 .  From Eqs . 31, then, 

Figure 5 shows snapshots of longi tudinal  and c i r cumfe ren t i a l   s t r e s s  

response a t  T = 2 .  The r e s u l t s  from Ref.  14 were obtained  by  applica- 

t i o n  of t he  Iiiethod  of c h a r a c t e r i s t i c s   t o   t h e  membrane shel l   equat ions;  

we see  that   they  are  very  closely  approximated  by  the  perturbation 

s o l u t i o n s   a t   t h i s   r a t h e r   e a r l y   t i m e .  

Before  concluding  this   discussion,   le t   us   br ief ly  examine the  argu- 

ment behind  the  transformation of E q s .  2 5   i n t o  E q s .  26, v iz  ., t ha t   pe r -  

turbation  solutions  obtained  from E q .  26  give c instead of  c a s   t he  

wave f ron t   ve loc i ty .   Th i s  i s  c lear ly   des i rab le  i f  one i s  i n t e r e s t e d   i n  

information  near  the wave f ron t ,   bu t  i s  less d e s i r a b l e   i f   t h e   e x c i t a t i o n  

f ( T )  va r i e s  so slowly  that   the   shel l   behaves much l i k e  a bar. I n   t h e  

l a t t e r   ca se ,  it i s  b e t t e r   t o  use  Eqs. 25 or, i n   t h e   c a s e  of prescribed 

end  motions,  the  equations 

b 
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The so lu t ions   to   these   equat ions   tha t   cor respond  to   Eqs .  19 are  

and the   so lu t ions   t o  Eqs. 25 t h a t  correspond tO Eqs. 31 a re  

0 0 

T* -CY 

0 

* 2 1/2 
where T = ( 1 - u  ) T = c t / a  and f i s .  the   four th   der iva t ive  of f 

i v  
b 

wi th   respsc t  t o  argument. For the examples  considered  above,  Eqs. 35 and 

36 yield  responses which d i f f e r  from  those  produced  by  Eqs. 19 and 31 
only i n   t h a t  T i s  replaced  by T . For slowly-varying  excitations,  

however, Eqs. 35 and 36 should  yield  better  solutions  than  Eqs.  19 and 

* 
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B - 4  CONCLUDING REMARKS 

We have seen  that   the   per turbat ion method can  provide  remarkably 

accura te   so lu t ions   for  problems involving  the  propagation of t r ans i en t ,  

axisymmetric s t r e s s  waves i n   e l a s t i c   c y l i n d r i c a l   s h e l l s .   I n   a d d i t i o n ,  

the  technique may be a p p l i e d   t o  a va r i e ty  of r e l a t ed  pr'oblems,  such a s  

the  propagation of compressional waves i n   e l a s t i c   r o d s .  T o  i l l u s t r a t e  

t h i s   app l i ca t ion ,  we consider  the Mindlin-Herrmann equations  (Ref. 34) 

N 

where u and w are   longi tudina l  and radial   displacements,   respectively,  

p and a are  the rod densi ty  and radius ,   respect ively,  I and p, a re  

the Lame' constants,  and n and n1 are   cor rec t ion   fac tors  on the  order 

of un i ty .  For motions  with  spatial  wave lengths  on the  order of and la rger  

than  the  rod  radius,   the  third  term on t h e   l e f t   s i d e  of the  second of 

Eqs. 37 may be  neglected  in  favor of the  term  immediately  preceding i t .  

This yie lds  a s e t  of equat ions  that   are  of the  same form a s  Eqs . 9, which 

permits   direct   appl icat ion of the  per turbat ion  technique  appl ied  to   Eqs.  9. 

N 
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